• 제목/요약/키워드: Aspect-Sentiment Analysis

검색결과 42건 처리시간 0.026초

Aspect-Based Sentiment Analysis with Position Embedding Interactive Attention Network

  • Xiang, Yan;Zhang, Jiqun;Zhang, Zhoubin;Yu, Zhengtao;Xian, Yantuan
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.614-627
    • /
    • 2022
  • Aspect-based sentiment analysis is to discover the sentiment polarity towards an aspect from user-generated natural language. So far, most of the methods only use the implicit position information of the aspect in the context, instead of directly utilizing the position relationship between the aspect and the sentiment terms. In fact, neighboring words of the aspect terms should be given more attention than other words in the context. This paper studies the influence of different position embedding methods on the sentimental polarities of given aspects, and proposes a position embedding interactive attention network based on a long short-term memory network. Firstly, it uses the position information of the context simultaneously in the input layer and the attention layer. Secondly, it mines the importance of different context words for the aspect with the interactive attention mechanism. Finally, it generates a valid representation of the aspect and the context for sentiment classification. The model which has been posed was evaluated on the datasets of the Semantic Evaluation 2014. Compared with other baseline models, the accuracy of our model increases by about 2% on the restaurant dataset and 1% on the laptop dataset.

CNN 보조 손실을 이용한 차원 기반 감성 분석 (Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis)

  • 전민진;황지원;김종우
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.1-22
    • /
    • 2021
  • 텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.

BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발 (Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.1-25
    • /
    • 2020
  • 대규모 텍스트에서 관심 대상이 가지고 있는 속성들에 대한 감성을 세부적으로 분석하는 속성기반 감성분석(Aspect-Based Sentiment Analysis)은 상당한 비즈니스 가치를 제공한다. 특히, 텍스트에 속성어가 존재하는 명시적 속성뿐만 아니라 속성어가 없는 암시적 속성까지 분석 대상으로 하는 속성카테고리 감성분류(ACSC, Aspect Category Sentiment Classification)는 속성기반 감성분석에서 중요한 의미를 지니고 있다. 본 연구는 속성카테고리 감성분류에 BERT 사전훈련 언어 모델을 적용할 때 기존 연구에서 다루지 않은 다음과 같은 주요 이슈들에 대한 답을 찾고, 이를 통해 우수한 ACSC 모델 구조를 도출하고자 한다. 첫째, [CLS] 토큰의 출력 벡터만 분류벡터로 사용하기보다는 속성카테고리에 대한 토큰들의 출력 벡터를 분류벡터에 반영하면 더 나은 성능을 달성할 수 있지 않을까? 둘째, 입력 데이터의 문장-쌍(sentence-pair) 구성에서 QA(Question Answering)와 NLI(Natural Language Inference) 타입 간 성능 차이가 존재할까? 셋째, 입력 데이터의 QA 또는 NLI 타입 문장-쌍 구성에서 속성카테고리를 포함한 문장의 순서에 따른 성능 차이가 존재할까? 이러한 연구 목적을 달성하기 위해 입력 및 출력 옵션들의 조합에 따라 12가지 ACSC 모델들을 구현하고 4종 영어 벤치마크 데이터셋에 대한 실험을 통해 기존 모델 이상의 성능을 제공하는 ACSC 모델들을 도출하였다. 그리고 [CLS] 토큰에 대한 출력 벡터를 분류벡터로 사용하기 보다는 속성카테고리 토큰의 출력 벡터를 사용하거나 두 가지를 함께 사용하는 것이 더욱 효과적이고, NLI 보다는 QA 타입의 입력이 대체적으로 더 나은 성능을 제공하며, QA 타입 안에서 속성이 포함된 문장의 순서는 성능과 무관한 점 등의 유용한 시사점들을 발견하였다. 본 연구에서 사용한 ACSC 모델 디자인을 위한 방법론은 다른 연구에도 비슷하게 응용될 수 있을 것으로 기대된다.

Aspect-based Sentiment Analysis of Product Reviews using Multi-agent Deep Reinforcement Learning

  • M. Sivakumar;Srinivasulu Reddy Uyyala
    • Asia pacific journal of information systems
    • /
    • 제32권2호
    • /
    • pp.226-248
    • /
    • 2022
  • The existing model for sentiment analysis of product reviews learned from past data and new data was labeled based on training. But new data was never used by the existing system for making a decision. The proposed Aspect-based multi-agent Deep Reinforcement learning Sentiment Analysis (ADRSA) model learned from its very first data without the help of any training dataset and labeled a sentence with aspect category and sentiment polarity. It keeps on learning from the new data and updates its knowledge for improving its intelligence. The decision of the proposed system changed over time based on the new data. So, the accuracy of the sentiment analysis using deep reinforcement learning was improved over supervised learning and unsupervised learning methods. Hence, the sentiments of premium customers on a particular site can be explored to other customers effectively. A dynamic environment with a strong knowledge base can help the system to remember the sentences and usage State Action Reward State Action (SARSA) algorithm with Bidirectional Encoder Representations from Transformers (BERT) model improved the performance of the proposed system in terms of accuracy when compared to the state of art methods.

리뷰에서의 고객의견의 다층적 지식표현 (Multilayer Knowledge Representation of Customer's Opinion in Reviews)

  • ;원광복;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

Comparative Analysis of Recent Studies on Aspect-Based Sentiment Analysis

  • Faiz Ghifari Haznitrama;Ho-Jin Choi
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.647-649
    • /
    • 2023
  • Sentiment analysis as part of natural language processing (NLP) has received much attention following the demand to understand people's opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained subtask from sentiment analysis that aims to classify sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike the early works, the current ABSA utilizes many elements to improve performance and provide more details to produce informative results. These ABSA formulations have provided greater challenges for researchers. However, it is difficult to explore ABSA's works due to the many different formulations, terms, and results. In this paper, we conduct a comparative analysis of recent studies on ABSA. We mention some key elements, problem formulations, and datasets currently utilized by most ABSA communities. Also, we conduct a short review of the latest papers to find the current state-of-the-art model. From our observations, we found that span-level representation is an important feature in solving the ABSA problem, while multi-task learning and generative approach look promising. Finally, we review some open challenges and further directions for ABSA research in the future.

감성 분석 화장품 사용자 리뷰에 대한 속성기반 감성분석 (Aspect-based Sentiment Analysis on Cosmetics Customer Reviews)

  • 정희원;정영섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.13-16
    • /
    • 2024
  • 온라인상에 인간의 감성을 담은 리뷰 데이터가 꾸준히 축적되어왔다. 이 텍스트 데이터를 분석하고 활용하는 일은 마케팅에 있어서 중요한 자산이 될 것이다. 이와 관련된 Aspect-Based Sentiment Analysis(ABSA) 연구는 한글에 있어서는 데이터 부족을 이유로 거의 선행연구가 없는 실정이다. 본 연구에서는 최근 공개된 데이터 셋을 바탕으로 하여 화장품 도메인에 대한 소비자들의 리뷰 텍스트와 사전 라벨링 된 속성, 감성 극성을 기반으로 ABSA를 진행한다. Klue RoBERTa base 모델을 활용하여 데이터를 학습시키고, Python Kiwipiepy 등으로 전처리한 결과를 대시보드로 시각화하여 분석하기 쉬운 환경을 마련하는 방법을 제시한다.

  • PDF

한국어 구문분석을 활용한 이유-감성 패턴 기반의 감성사전 구축 (Sentiment Dictionary Construction Based on Reason-Sentiment Pattern Using Korean Syntax Analysis)

  • 김우현;이희정
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.142-151
    • /
    • 2023
  • Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.

개체단위 감정분석을 위한 글로벌 텍스트&로컬 텍스트 통합 방법 (Global Text & Local Text Integration Method for Aspect-Based Sentiment Analysis)

  • 임특;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.414-416
    • /
    • 2022
  • 개체단위 감정분석(Aspect-Based Sentiment Analysis)는 자연어 처리에서 중요한 연구분야이다. 이는 입력 문장중에 존재하는 aspect term 의 감정 극성을 분석하는 것이 목적이다. 이 분야에서 현재 많이 사용되는 모델은 대부분 로컬 텍스트 또는 로컬 덱스트와 aspect term 사이의 관계에 주목하고 있다. 로켈 텍스트에 비해 글로벌 텍스트는 로컬 텍스트 뒤에 aspect term 내용을 추가해서 문장중에 있는 aspect term 내용을 더 깊게 학습할 수 있다고 생각한다. 본 논문에서는 새로운 masked attention 메커니즘을 사용하고 attention 메커니즘의 입력으로 글로벌 텍스트중에 있는 로컬 텍스트를 가로채어 전체 글로벌 텍스트의 내용과 융합한다. 이 방법은 semeval2014 데이터 셋에서 매우 좋은 결과를 얻었다.

잠재 구조적 SVM을 활용한 감성 분석기 (Sentiment Analysis using Latent Structural SVM)

  • 양승원;이창기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.240-245
    • /
    • 2016
  • 본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.