• Title/Summary/Keyword: Aspect dependence

Search Result 72, Processing Time 0.02 seconds

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda;Heireche, Houari;Zidour, Mohamed;Rakrak, Kaddour;Bousahla, Abdelmoumen Anis
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.193-206
    • /
    • 2015
  • The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

SMA-based devices: insight across recent proposals toward civil engineering applications

  • Casciati, Sara
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.111-125
    • /
    • 2019
  • Metallic shape memory alloys present fascinating physical properties such as their super-elastic behavior in austenite phase, which can be exploited for providing a structure with both a self-centering capability and an increased ductility. More or less accurate numerical models have been introduced to model their behavior along the last 25 years. This is the reason for which the literature is rich of suggestions/proposals on how to implement this material in devices for passive and semi-active control. Nevertheless, the thermo-mechanical coupling characterizing the first-order martensite phase transformation process results in several macroscopic features affecting the alloy performance. In particular, the effects of day-night and winter-summer temperature excursions require special attention. This aspect might imply that the deployment of some devices should be restricted to indoor solutions. A further aspect is the dependence of the behavior from the geometry one adopts. Two fundamental lacks of symmetry should also be carefully considered when implementing a SMA-based application: the behavior in tension is different from that in compression, and the heating is easy and fast whereas the cooling is not. This manuscript focuses on the passive devices recently proposed in the literature for civil engineering applications. Based on the challenges above identified, their actual feasibility is investigated in detail and their long term performance is discussed with reference to their fatigue life. A few available semi-active solutions are also considered.

Preparation of Porous Cobalt Thin Films by Using an Electrochemical Method (전기화학적 방법을 통한 다공성 코발트 박막 합성)

  • Ha, Seong-Hyeok;Shin, Heon-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • Morphology of porous cobalt electro-deposits was systematically investigated as functions of cobalt precursors in the plating bath and applied cathodic current density with a special focus on cobalt nano-rod formation. It was proved that the concentration of cobalt precursor plays little effect on the morphology of cobalt electro-deposits at relatively low plating current density while it significantly affects the morphology with increasing plating current density. Such a dependence was discussed in terms of the kinetics of two competitive reactions of cobalt reduction and hydrogen evolution. Cobalt nano-rod structure was created at specific ranges of cobalt precursor content and applied cathodic current density, and its diameter and length varied with plating time without notable formation of side branches which is usually found during dendrite formation. Specifically, the nano-rod length was preferentially increased in relative short plating time (<15 s), resulting in higher aspect ratio of nano-rod with plating time. Whereas, both the nano-rod length and diameter were increased nearly at the same level in a prolonged plating time, making the aspect ratio unchanged. From the analysis of crystal structure, it was confirmed that the cobalt nano-rod preferentially grew in the form of single crystal on a dense poly-crystalline cobalt thin film initially formed on the substrate.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

Pharmacological Treatment of Alcoholism (알코올중독의 약물치료)

  • Sung, Sang Kyung
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 1999
  • This review focused on the pharmacological treatment of alcoholism, especially alcoholism-related mental disorder. The pharmacological agent for alcoholism can be divided into the following categories : anticraving agent, aversive agent, agent to treat acute alcohol withdrawal, agent to diminish drinking by treating associated psychiatric pathology, agent to induce sobriety in intoxicated individuals. Following trends are included in new trends of pharmacological treatment of alcoholism. What are precise conditions amenable to pharmacological intervention? ; How can psychosocial and behavioral intervention be integrated with pharmacotherapy to enhance treatment outcome? ; Is the concept of "matching" specific pharmacotherapy treatment to different aspect of alcoholism more efficacious than a more generalized medicational approach to treatment? One of the most important factors for alcoholics treatment is good and proper therapeutic relationship with patients and setting up individually specialized treatment program is also important.

  • PDF

Review and Discussion on Development of Soil Quality Indicators (토양의 질 지표 개발 동향과 논의)

  • Yoon, Jung-Hui
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.192-198
    • /
    • 2004
  • The heavy dependence of modern science-based agriculture on chemicals such as fertilizers and pesticides, and heavy machinery gave rise to questions about long-term sustainability of agriculture in relation to degradation of soil quality. The research achievements and trends in developing soil quality indicators were introduced and discussed in this report. Organization for Economic Cooperation and Development (OECD) established 13 agri-environment indicators including soil quality indicator in 1994, collected the soil data and methodologies for development of soil quality indicators in OECD member countries responded to OECD questionnaires and published the OECD reports, Environmental Indicators for Agriculture Volume 1, 2, and 3. Leading countries such as USA, Canada and New Zealand collected national data and evaluated the data in aspect of soil quality. They developed the various methods for selecting a minimum data set (MDS), scoring the soil properties and calculating soil quality index integrating the score of each soil property.

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.

Shape factors of cylindrical permeameters

  • Silvestri, Vincenzo;Samra, Ghassan Abou;Bravo-Jonard, Christian
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • This paper presents an analytical solution for steady state flow into a close-ended cylindrical permeameter. The soil medium is considered to be uniform, isotropic, and of infinite thickness. Laplace equation is solved by considering rotational symmetry and by using curvilinear coordinates obtained from conformal mapping. The deduced shape factors, which are compared to approximate relationships obtained from both numerical and physical modelling, and idealizations involving ellipsoidal cavities, are proposed for use in field measurements. It is shown that some of the shape factors obtained are significantly different from published values and show a much higher dependence of the rate of flow on the aspect ratio, than deduced from approximate solutions.

Flapwise Bending Vibration Analysis of Rotating Cantilever Plates (회전 외팔평판의 면외 방향 굽힘진동 해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.613-618
    • /
    • 2000
  • It is well known that the rotating motion of a blade-like structure induces centrifugal inertia force that causes the variation of the natural frequencies of the structure. Even though most of blade-like structures can be successfully Idealized as beams, some behave like plates rather than beams. This paper presents a modeling method for the flapwise bending vibration analysis of rotating cantilever plates. The dependence of natural frequencies and free vibration modes on the angular speed as well as the aspect ratio of a rotating plate is investigated. Particularly. the natural frequency loci crossing is observed and discussed In the present study.

  • PDF

SPATIAL TRENDS AND SPATIAL EXTREMES IN SOUTH KOREAN OZONE

  • Yun, Seok-Hoon;Richard L. Smith
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.313-335
    • /
    • 2003
  • Hourly ozone data are available for 73 stations in South Korea from January, 1988 to August, 1998. We are interested in detecting trends in both the mean levels and the extremes of ozone, and in determining how these trends vary over the country. The latter aspect means that we also have to understand the spatial dependence of ozone. In this connection, therefore, we examine in this paper the following features: determining trends in mean ozone levels at individual stations and combination across stations; determining trends in extreme ozone levels at individual stations and combination across stations; spatial modeling of trends in mean and extreme ozone levels.