• Title/Summary/Keyword: Aspect Ratio Effect

Search Result 757, Processing Time 0.024 seconds

Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete (후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성)

  • Kim, Dong-Hui;Jang, Seok-Joon;Kim, Sun-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.40-47
    • /
    • 2021
  • This study investigates the influence of hooked-end steel fiber volume fraction and aspect ratio on the mechanical properties, such as compressive and flexural performance, of concrete with specified compressive strength of 30MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were selected. The flexural tests of steel fiber reinforced concrete (SFRC) prismatic specimens were conducted according to EN 14651. The compressive performance of SFRC with different volume fractions (0.25, 0.50 and 0.75%) were evaluated through standard compressive strength test method (KS F 2405). Experimental results indicated that the flexural strength, flexural toughness, fracture energy of concrete were improved as steel fiber volume fraction increases but there is no unique relationship between steel fiber volume fraction and compressive performance. The flexural and compressive properties of concrete incorporating hooked-end steel fiber with aspect ratio of 64 and 80 are a little better than those of SFRC with aspect ratio of 67. For each SFRC mixture used in the study, the residual flexural tensile strength ratio defined in Model Code 2010 was more than the limit value to be able to substitute rebar or welded mesh in structural members with the fiber reinforcement.

New experimental system for base-isolated structures with various dampers and limit aspect ratio

  • Takewaki, I.;Kanamori, M.;Yoshitomia, S.;Tsuji, M.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.461-475
    • /
    • 2013
  • A new experimental system of base-isolated structures is proposed. There are two kinds of dampers usually used in the base-isolated buildings, one is a viscous-type damper and the other is an elastic-plastic hysteretic-type damper. The base-isolated structure with a viscous damper and that with an elastic-plastic hysteretic damper are compared in this paper. The viscous damper is modeled by a mini piston and the elastic-plastic hysteretic damper is modeled by a low yield-point steel. The capacity of both dampers is determined so that the dissipated energies are equivalent at a specified deformation. When the capacity of both dampers is determined according to this criterion, it is shown that the response of the base-isolated structure with the elastic-plastic hysteretic damper is larger than that with the viscous damper. This characteristic is demonstrated through the comparison of the bound of the aspect ratio. It is shown that the bound of aspect ratio for the base-isolated structure with the elastic-plastic hysteretic damper is generally smaller than that with the viscous damper. When the base-isolated structure is subjected to long-duration input, the mechanical property of the elastic-plastic hysteretic damper deteriorates and the response of the base-isolated structure including that damper becomes larger than that with the viscous damper. The effect of this change of material properties on the response of the base-isolated structure is also investigated.

Effect of Aspect Ratio of Flat Tube on R410A Evaporation Heat Transfer and Pressure Drop (납작관의 종횡비가 R-410A 증발열전달 및 압력손실에 미치는 영향)

  • Kim, Nae Hyun;Lee, Eul Jong;Byun, Ho Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.395-404
    • /
    • 2013
  • In this study, R-410A evaporation heat transfer tests were conducted in flattened tubes made from 5-mm round tubes. The test range covered a saturation temperature of $15^{\circ}C$, heat flux of $5{\sim}15kW/m^2K$, and mass flux of $200-400kg/m^2s$. The results showed that both the condensation heat transfer coefficient and the pressure drop increased as the aspect ratio increased, with a pronounced increase for an aspect ratio of 4. A comparison of the flattened tube data with existing correlations revealed that the heat transfer coefficients were reasonably predicted by the Shah correlation, and the pressure drops were reasonably predicted by the Jung and Radermacher correlation.

Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage (초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발)

  • Jeon Jong-Up;Lee Chang-Soo;Choi Jae-Joon;Min Dong-Ki;Jeon Dong-Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.166-173
    • /
    • 2006
  • In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.

The Effect of Spray Flow Rate, Aspect Ratio, and Filling Rate of Wet Scrubber on Smoke Reduction (습식 스크러버의 분무유량, 형상비 및 충진율 변화가 스모크 저감에 미치는 영향)

  • Son, Kwun;Lee, Ju-Yeol;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • There has been increased amount of atmospheric pollutants including NOx and SOx which cause acid rain and photochemical smog as a result of increased use of fossil fuels. In order to reduce the amount of pollutants produced by fossil fuel, wet scrubber system is introduced in this experiment. Wet scrubber system is applied to a diesel engine (3,298 cc) and the amount of smoke is measured before and after the application in terms of aspect ratio, filling rate, and flow rate. The result showed a lot of smoke reduction when wet scrubber system was applied, and also the aspect ratios and water spray flow rate were the important factors to improve smoke reduction.

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern : I. Optical Analysis and Design (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : I. 광학 해석 및 설계)

  • Hwang, C.J.;Ko, Y.B.;Kim, J.S.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.239-242
    • /
    • 2006
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LGP (Light Guiding Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50{\sim}200$ um in diameter on it by etching process. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with 50um micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different aspect ratio (i.e. $0.2{\sim}0.5$) of optical pattern conditions to the brightness distribution of BLU with micro-lens patterned LGP. Finally, high aspect ratio micro-lens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

  • PDF

Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO (염화제일수은과 일산화질소의 물리적 승화법 공정에서의 확산-대류에 미치는 에스펙트 비율의 영향)

  • Kim, Geug-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.746-752
    • /
    • 2015
  • This study investigates the effects of aspect ratio (transport length-to-width) on diffusive-convection for physical vapor transport processes of $Hg_2Cl_2-NO$ system. For a system with the temperature difference of 20 K between an interface at the source material region and growing crystal interface, the linear temperature profiles at walls, the total molar fluxes at Ar = 2 are much greater than Ar = 5 as well as the corresponding nonuniformities in interfacial distributions due to the effect of convection. The maximum total molar flux at the gravitational acceleration of 1 $g_0$ is greater twice than at the level of 0.1 $g_0$, where g0 denotes the gravitational acceleration on earth. With increasing aspect ratio from 2 to 5, a diffusive-convection mode is transited into the diffusion mode, and then the strength of diffusion is predominant over the strength of diffusive-convection.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.

Effects of Short-fiber End Shape on Tensile Properties of Reinforced Rubber (단섬유 끝 형상이 강화고무의 인장 특성에 미치는 영향)

  • Ryu, Sang-Ryeol;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.1023-1030
    • /
    • 2001
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of diameter ratio(DR), interphase condition, fiber aspect ratio(AR), and fiber content. The short-fiber(DR=3 and AR=2) reinforced SBR did not show the dilution effect for all interphase conditions. And the short-fiber(DR=3 and AR=2) reinforced NR did not show the dilution effect except for the no-coating. The better interphase condition, the lower dilution effect at same DR. The tensile moduli are significantly improved due to fiber content and diameter ratio at same interphase condition. The pull-out force increased with the DR. The better interphase condition, the higher pull-out force at same DR. It is found that the DR and AR have an important effect on tensile properties.

PVA Technology for High Performance LCD Monitors

  • Kim, Kyeong-Hyeon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.1-4
    • /
    • 2000
  • We have developed a high performance vertical alignment TFT-LCD, that shows a high light transmittance, and wide viewing angle characteristics with an unusually high contrast ratio. In order to optimize the electro-optical properties we have studied the effect of cell parameters, multi-domain structure and retardation film compensation. With the optimized cell parameters and process conditions, we have achieved a 24" wide UXGA TFT-LCD monitor (16:10 aspect ratio 1920X1200) showing a contrast ratio over 500:1, panel transmittance near 4.5%, response time near 27 ms, and viewing angle higher than 80 degree in all directions.

  • PDF