• Title/Summary/Keyword: Ash-free coal

Search Result 30, Processing Time 0.026 seconds

Comparative Characterization of AFC Precipitated Using Vacuum Drying, Dilution Precipitation and Spray Drying (감압건조, 희석침전, 분무건조 방식으로 제조된 무회분석탄의 특성)

  • Kwon, Ho Jung;Choi, Ho Kyung;Jo, Wan Taek;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • Solid ash-free coal (AFC) samples recovered from solvent-extracted solution by vacuum drying, dilution precipitation and spray drying methods were compared in terms of physical properties and chemical structure. AFC was prepared by using Kideco coal (Indonesian sub-bituminous coal) and polar N-methyl-2-pyrrolidone (NMP) solvent as raw materials. The physical properties of the AFCs were characterized with proximate, ultimate, and calorific value analysis. In analyzing the chemical structure, FTIR and NMR were used. the proximate analysis showed much reduced ash in the AFCs compared to parent raw coal. The FTIR result showed that the extraction solvent was not fully removed from the AFC prepared by vacuum drying. However, the solvent was not detected in the AFC recovered by using dilution precipitation. Dilution precipitation has advantages over the other two methods, since it can be done at relatively low temperature and separate ash-free coal from extraction solvent more effectively.

Characteristics of Solid Fuel Oxidation in a Molten Carbonate Fuel Cell

  • Lee, Choong-Gon;Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Sang-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • Oxidation behaviours of ash free coal (AFC), carbon, and H2 fuels were investigated with a coin type molten carbonate fuel cell. Because AFC has no electrical conductivity, its oxidation occurs via gasification to H2 and CO. An interesting behaviour of mass transfer resistance reduction at higher current density was observed. Since the anode reaction has the positive reaction order of H2, CO2 and H2O, the lack of CO2 and H2O from AFC results in a significant mass transfer resistance. However, the anode products of CO2 and H2O at higher current densities raise their partial pressure and mitigate the resistance. The addition of CO2 to AFC reduced the resistance sufficiently, thus the resistance reduction at higher current densities did not appear. Electrochemical impedance results also indicate that the addition of CO2 reduces mass transfer resistance. Carbon and H2 fuels without CO2 and H2O also show similar behaviour to AFC: mass transfer resistance is diminished by raising current density and adding CO2.

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

CO2 Capture Performance of Dry Sorbents Manufactured by Coal Fly Ash (석탄 화력발전소의 비산재를 이용한 건식 CO2 흡수제 제조 및 특성 연구)

  • Lee, Jae Hee;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.547-553
    • /
    • 2013
  • This paper investigates the effect of coal-fired fly ash on dry $CO_2$ sorbents as the supports and additives. For this purpose, various kinds of dry sorbent were manufactured by mixing fly-ash, the primary $CO_2$ absorption components (NaOH and CaO) and water with their different combination. Thereafter, their $CO_2$ absorption performance and the property were analyzed. As a result, variation of absorption efficiency and temperature as well as $CO_2$ desorption of the sorbents are confirmed, which may be primarily ascribed to fly-ash addition to the sorbents. Particularly, fly-ash effect is strongly measured in the sorbent manufactured by mixing all four components (named WNCF sorbents). Absorption efficiency of WNCF sorbents at $550^{\circ}C$ is 35.6% higher than that of flyash free sorbent and desorption is solely observed in WNCF sorbents. Fly-ash in WNCF sorbents leads to increase the dispersity of $CO_2$ absorption components and decrease their particle size in the sorbents. In addition, fly-ash is used as the supports and pozzolanic reaction is hindered by NaOH in WNCF sorbent. Furthermore, $CO_2$ desorption from the sorbents may be due to fly-ash. The interaction between fly-ash and $CO_2$ absorption components substantially attenuate the strength between captured $CO_2$ in CaO and NaOH.

Pozzolanic Properties of Fly Ash from a Coal Fired Power Plant (미분탄 화력발전소 플라이 애쉬의 포졸란 특성에 관하여)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.702-708
    • /
    • 2003
  • Cement paste, mortar or concrete specimens, substituting the content of Portland cement with fly ash up to 50 wt%, were prepared to investigate the effect of fly ash on the temperature, free lime content and strength etc. of mortar/concrete. Being compared with the concrete made of ordinary Portland cement, temperature increment of the concrete containing 50 wt% fly ash reduced, according to appropriate conversion formulae, to about 45% at the 7 days curing time: the temperature increment of the former amounted to 33.4$^{\circ}C$, while that of the latter only to 18.7$^{\circ}C$. On the other hand, it is better to control the content of fly ash in the cement that is used for reinforced concrete not to exceed 30 wt%. In this study, more than 28 days curing time is necessary in order that the strength of concrete made of fly ash cement will be higher than that of pure Portland cement. In addition, 28-days concrete strength higher than 360 kg/$\textrm{cm}^2$ could be easily achieved even with 50 wt% fly ash cement.

Removal Characteristics of Sr and Cu Ions using PS-FZ Beads fabricated by Immobilization of Zeolite prepared from Coal Fly Ash from an Ulsan Industrial Complex with Polysulfone (울산산업공단에서 배출되는 coal fly ash로 합성한 제올라이트를 폴리슬폰으로 고정화하여 제조한 PS-FZ 비드의 Sr 및 Cu 제거 특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Jeong, Kap-Seop;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1623-1632
    • /
    • 2016
  • Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.

Physical and Chemical characteristics of Cokes Using Ash-Free Coal as binder (무회분 석탄(AFC)을 바인더로 이용한 코크스의 물리적 및 화학적 특성)

  • Kim, Gyeong Min;Kim, Jin Ho;Lisandy, Kevin Yohanes;Kim, Gyu Bo;Choi, Ho Kyung;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.395-400
    • /
    • 2017
  • Coke strength was increased by adding ash-free coal (AFC) binder. In this study, the effect of the AFC binder on the physical and chemical properties of coke was experimentally investigated to understand the molecular mechanism for the improved coke strength. For reduced $CO_2$ emission in steelmaking industry, torrefied biomass fuel mixed with coal binder is also considered. The interface between the base coal and AFC was thus examined using Scanning Electron Microscope (SEM). The coke strength was commonly measured by performing the indirect tensile test and Nuclear Magnetic Resonance (NMR) spectroscopy in $^1H$ and $^{13}C$ modes. For comprehensive mechanism study of the enhanced coke strength thus obtained, ordinary coal for thermal power plant use was carbonized with AFC for subsequent SEM examination. The NMR spectroscopy results of coke samples positively revealed that the tensile strength was proportional to the average number of aromatic rings.

Immobilization of oxidative enzymes onto Cu-activated zeolite to catalyze 4-chlorophenol decomposition

  • Zol, Muhamad Najmi Bin;Shuhaimi, Muhammad Firdaus Bin;Yu, Jimin;Lim, Yejee;Choe, Jae Wan;Bae, Sungjun;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.195-200
    • /
    • 2020
  • In this study, a biocatalyst composite was prepared by immobilizing oxidoreductases onto Cu-activated zeolite to facilitate biochemical decomposition of 4-chlorophenol (4-CP). 4-CP monooxygenase (CphC-I) was cloned from a 4-CP degrading bacterium, Pseudarthrobacter chlorophenolicus A6, and then overexpressed and purified. Type X zeolite was synthesized from non-magnetic coal fly ash using acetic acid treatment, and its surfaces were coated with copper ions via impregnation (Cu-zeolite). Then, the recombinant oxidative and reductive enzymes were immobilized onto Cu-zeolite. The enzymes were effectively immobilized onto the Cu-zeolite (79% of immobilization yield). The retained catalytic activity of CphC-I after immobilization was 0.3423 U/g-Cu-zeolite, which was 63.3% of the value of free enzymes. The results of this study suggest that copper can be used as an effective enzyme immobilization binder because it provides favorable metalhistidine binding between the enzyme and Cu-zeolite.

Microstructure and Mechanical Properties of the Sintered Kaolin Block with Fly Ashes (Fly Ash를 이용한 고령토벽돌의 소결 특성)

  • Lee, Jin-Uk;Lee, Sung-Min;Kim, Hyung-Tae;Choi, Eui-Seok;Lee, Yong-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1164-1170
    • /
    • 2002
  • The effect of fly ash addition to the kaolin block has been investigated. The addition affected the firing temperature and physical properties such as water absorption and compressive strength. The starting materials were from korea natural resources and the fly ash were from the power plant using coal as fuel, containing free carbon of 8∼9 wt%. The starting natural materials were mixed with 5 different proportions of fly ash, pressed and then sintered at 1050, 1100, 1150 and 1200${\circ}C$. With sintering temperature, water absorption decreased and compressive strength increased. When specimens were sintered at the temperature lower than 1100${\circ}C$, water absorption increased and strength decreased with fly ash content. In contrast, when sintering was done at the temperature higher than 1150${\circ}C$, water absorption increased with fly ash content similarly but strength was improved.