• Title/Summary/Keyword: Ash

Search Result 6,611, Processing Time 0.03 seconds

Application on Concrete using Artificial Aggregate with Paper Sludge Ash (제지 슬러지 소각회 인공골재의 콘크리트에의 적용)

  • 문경주;백명종;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.173-178
    • /
    • 1998
  • This study is described the experimental result of the development of artificial aggregate using paper sludge ash and the application of it in concrete. Artificial aggregates are prepared with crushed stone in the variety aspect. Therefore, Quality properties of artificial aggregate using paper sludge ash are fairly corresponded with it of crushed stone. For the application of artificial aggregate using paper sludge ash in concrete, Coarse aggregates are replaced with artificial aggregate using paper sludge ash in the constant of volume(0%, 30%, 70%, 100%). It is conclued from the test results that the artificial aggregate using paper sludge ash could be used replacement of coarse aggregate in concrete. Continuous study should be planned for improvement of it's quality.

  • PDF

A Study of Concrete with Large Quantity of Fly-Ash (플라이애쉬 다량 함유 콘크리트에 관한 실험적 연구)

  • 이동하;공민호;백민수;김성식;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1219-1224
    • /
    • 2001
  • In this study, concrete what plenty of fly ash used as binder is left in three condition humid condition($35^{\circ}C$), normal condition($20^{\circ}C$) and cold condition($5^{\circ}C$). Fly ash concrete is tested in fresh properties and early strength. The result of tests could give the decisive factor of form side's stripping time. The purpose of this study is presenting the stripping time data to help the construction work. The result of this study is below. 1. The plain concrete specimen in humid condition developed high strength before 5 days, then strength development is declined. 10 day strength of plain specimen is smaller than the normal condition specimen's. 2. The strength of the concrete which plenty of fly ash used is more developed than the concrete in normal condition. It says that fly ash concrete is useful in the humid condition. 3. As fly ash substitution rate is downsizing and outdoor temperature degree is low, form stripping times is getting shorter.

  • PDF

Mechanical Characteristics of Recycled Structural Concrete with Fly Ash (Fly Ash를 사용한 구조용 재생 콘크리트의 역학적 특성)

  • 김진영;김장우;이봉학;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.229-234
    • /
    • 1994
  • Various of batches of recycled concretes were produced with different rations of recycled aggregate (20% and 50%) and admixtures based on workable range of slump value and using a fixed w/c ration. Mechanical characteristics of the recycled concretes were evaluated. Test results showed that, in general, relatively high strength recycled concrete could be obtained using a plasticiser. The concrete using fly ash showed somewhat reduced strength, lower elastic modulus and relatively high strain, in general. However, the strength reduction ratio of the recycled concrete due to adding fly ash was relatively minor, compared with normal concrete. Since it has been known that the fly ash is used in place of cement and gives an improved long term strength, a further study may be warranted for a possibility of using fly ash without degrading the strength required.

  • PDF

Experimental Study on the Mechanical Properties of CF Reinforced Fly Ash-Cement Composites(I) (탄소섬유 보강 플라이 애쉬-시멘트 복합재의 역학적 특성에 관한 실험적 연구(I))

  • 박승범;윤의식;송용순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.11-15
    • /
    • 1990
  • Results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced fly ash-cement composites are presented in this paper. The carbon fiber reinforced fly ash-cement composites using silica powder and a small amount of Ethylene vinyl acetate emulsion are prepared with carbon fiber, foaming agents and curing conditions. As a result, the manufacturing process technology of carbon fiber reinforced fly ash-cement composites is developed. And the mechanical properties such as compressive, tensile and flexural strengths and drying shrinkage of lightweight carbon fiber reinforced fly ash-cement composites are improved by using a small amount of Ethylene vinyle acetate emulsion. The development and applications of precast products and the design systems of lightweight carbon fiber reinforced fly ash-cement composites are expected in the near future.

  • PDF

Modeling slump of concrete with fly ash and superplasticizer

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.559-572
    • /
    • 2008
  • The effects of fly ash and superplasticizer (SP) on workability of concrete are quite difficult to predict because they are dependent on other concrete ingredients. Because of high complexity of the relations between workability and concrete compositions, conventional regression analysis could be not sufficient to build an accurate model. In this study, a workability model has been built using artificial neural networks (ANN). In this model, the workability is a function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, and fine aggregate. The effects of water/binder ratio (w/b), fly ash-binder ratio (fa/b), superplasticizer-binder ratio (SP/b), and water content on slump were explored by the trained ANN. This study led to the following conclusions: (1) ANN can build a more accurate workability model than polynomial regression. (2) Although the water content and SP/b were kept constant, a change in w/b and fa/b had a distinct effect on the workability properties. (3) An increasing content of fly ash decreased the workability, while raised the slump upper limit that can be obtained.

Microstructural Characteristics of Alkali-Activated Cements Incorporating Fly Ash and Slag (플라이애시와 슬래그 혼합 알칼리 활성 시멘트의 미세구조 특성)

  • Jang, Jeong Gook
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • This study investigates microstructural characteristics of alkali-activated cements incorporating slag and fly ash. Samples were prepared with four fly ash:slag ratios, i.e., 100:0, 90:10, 70:30 and 50:50, and they were synthesized by using an alkali activator. Microstructural characteristics of the alkali-activated cements were determined by XRD, TGA, SEM, N2 gas adsorption/desorption methods, and compressive strength test. The results showed that properties of alkali-activated fly ash/slag were significantly affected by slag contents. Alkali-activated fly ash/slag with slag content of 30-50% showed higher compressive strength than ordinary Portland cement paste. An increase in slag content resulted in a denser microstructure, which composed of amorphous gel, therefore contributed to strength development of the material.

An Experimental Study on Elastic Properties of Rice Straw Ash Concrete (볏짚재 콘크리트의 탄성특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.92-98
    • /
    • 2000
  • This study is performed to evaluate the elastic properties of rice straw ash concrete using reices straw ash, cement, natural sand, gravel, and superplasticizer. The following conclusions are drawn ; The ultrasonic pulse velicity is in the range of 4,084 ~4,336m/s , which has showed about the same compared to that of the normla cement concrete. The highest ultrasonic pulse velocity is showed by 5 % rice straw ash filled rice straw ash concrete. The dynamic and static modulus of elasticity is in the range of 294 $\times$10$^3$ ~347 $\times$ 10$^3$ and 266 $\times$10$^3$~328 $\times$10$^3$kgf/㎤ , respectively. It is showed about the same compared to that of the normal cement concrete. The Poisson's number of rice straw ash concrete is less than that of the normal cement concrete.

  • PDF

Development of Eco Burner Ash Melting Furnace System

  • Sekiguchi, Yoshitoshi;Hamabe, Kohei;Momoda, Shigeru
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.19-22
    • /
    • 2001
  • In recent years, the creation of waste recycling society has been required to cope with the traditional ways of waste treatments. In accordance with the package recycling law in force, calls for the developments of new waste treatment techniques suitable for 21st century are growing higher. A new ash melting furnace system named Eco Burner Ash Melting Furnace System has been developed. It is a burner type ash melting system in which the fluffs made of the plastics segregated from municipal solid wastes are directly fired at high temperature in the furnace. This system provides an economical ash melting system because plastic wastes or paper scraps that have heretofore been considered hard to recycle are used in compensation for fossil fuel. In this paper, we describe the ash melting test results obtained from a substantiative facility.

  • PDF

Comparison of Geotechnical Characteristics of Bottom Ash for Lightweight Fill Material (경량 성토재 활용을 위한 석탄 저회 물성 비교)

  • Kim, Yun-Ki;Lee, Sung-Jin;Shin, Min-Ho;Lee, Seung-Rae;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.679-686
    • /
    • 2010
  • Mechanical characteristics of bottom ash produced in coal-fired power plant are investigated to utilize as light-weight fill materials. Triaxial compression test, water retention test, and unsaturated direct shear test were conducted for weathered soil (WS), reclaimed bottom ash (RBA), and screened bottom ash (BA). RBA had larger frictional angle and lower effective cohesion than those of WS. Water retention charactersitics of RBA and BA existed within distributions of soil-water characteristic curves for domestic weathered soils. Unsaturated shear strength of RBA was similar to that of WS at matric suctions of 50 kPa and 100 kPa. As a conclusion, bottom ash can be used as fill materials to replace the conventional construction materials by.

  • PDF

A Study on Application of Bottom Ash with Grouting Improvement and Waterproof Grouting (지반보강 및 차수 그라우팅재로서의 Bottom Ash 활용에 관한 연구)

  • Kwon, Hyuk-Doo;Lee, Bum-Jun;Doh, Young-Gon;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1075-1082
    • /
    • 2008
  • Recently, coal ashes which are increasing annually are buried in ash ponds as industrial wastes. However, buried coal ashes can pollute ground water and ground due to leachate from coal ashes, which are serious environmental problem. Even though a lot of researches on recycling of coal ashes have been conducted, only 15% of coal ashes are recycled up to now. And those recycled coal ashes are not bottom ashes but fly ashes. So in this study, it was proved that Bottom Ash can be used as an alternative material to O.P.C(Ordinary Portland Cement) according to laboratory test results and test field construction. Also bottom ash is more economical and environmentally friendly than O.P.C.

  • PDF