• Title/Summary/Keyword: Ash

Search Result 6,611, Processing Time 0.026 seconds

Characterization of Wood Chip Ash Generated from a Power Plant (열병합 발전소에서 발생한 우드칩 분진에 대한 특성 분석)

  • Bang, Jung Won;Kim, Soo-Ryong;Kim, Younghee;Kim, Mido;Kang, Won-Seok;Cho, Kye-Hong;Kwon, Woo-Teck
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • The amount of the wood chip ash is expected to increase continuously as demand of wood chip-based heat and electricity increase. Thus, there is increased interest in wood chip ash utilization. In this study, as a program of utilization in wood chip ash, the physical and chemical properties of wood chip ashes generated from a combined heat and power plant were investigated. The chemical analysis showed that the main contents of wood chip ash are composed of silica, alumina and alkali. A possibility of reuse as secondary cementitious materials was investigated by the analysis of strength activity index, and compared with coal ash. The highest value for Strength activity index of wood chip fly ash was 78% at 90 days curing time. This result revealed that wood chip fly ash has the potential to be utilized as the admixture for cementitious material.

Properties of Cement Mortar According to Mixing of Circulating Fluidized Bed Fly Ash and Pulverized Coal Fly Ash based on Blast Furnace Slag (고로슬래그 기반 순환유동층 플라이애시 및 미분탄 플라이애시 혼입에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the characteristics of the cement mortar replaced with fly ash and ground granulated blast furnace slag generated during circulating fluidized bed combustion method and pulverized coal combustion process were investigated. As a result of the study, when mixed with circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash, it is advantageous not only in terms of strength development but also in terms of durability. The circulating fluidized bed combustor fly ash contributes to the improvement of initial reactivity, and the pulverized coal combustion fly ash is involved in long-term strength development through pozzolanic reaction. Therefore, it can be seen that the mixed use of circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash acts as a complementary factor for cement mortar substituted with ground granulated blast furnace slag.

Characteristics of Thermal Conductivity of Concrete Containing Fine Bottom Ash Aggregates (바텀애시 경량골재를 사용한 콘크리트의 열전도율 특성)

  • Park, Ji-Hun;Jung, Hoe-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this paper, an experimental study was conducted to investigate the applications of bottom ash, which is an industrial by-product obtained from thermal power plants. Bottom ash was used as fine aggregate in this study, and an experiment was conducted to determine the characteristics of the bottom ash aggregate. In addition, 25, 50, 75, and 100% contents of crushed (natural) fine aggregate were replaced with bottom ash aggregate to produce concrete mixture including bottom ash. Thereafter, test results of the unit weight, ultrasonic velocity, compressive strength, and thermal conductivity of bottom ash concrete were obtained. Moreover, the effect of the curing ages of 28 and 91 days on the material characteristics of bottom ash concrete were identified. Test results showed that bottom ash used as fine aggregate had pozzolanic reaction. Finally, based on the extensive experimental results, relationships between thermal conductivity and unit weight, ultrasonic velocity, and compressive strength was suggested.

The Degree of Hydration and Mechanical Properties of High Volume Fly Ash Cement (하이볼륨 플라이애시 시멘트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.95-102
    • /
    • 2022
  • Recently, there has been a growing interest in reducing greenhouse gases in all industrial fields. In the construction industry, studies have been conducted for the use of high-volume fly ash concrete to replace cement with fly ash. Quantitative measurements of cement hydration and fly ash reactivity enable a clear understanding of the strength development mechanism of high-volume fly ash concrete. It is very difficult to describe the reactivity in a simple way because the hydration and pozzolanic reactions of cement paste containing fly ash are very complex and the composition of the hydration product cannot be accurately determined. This study investigated the hydration and mechanical properties of high volume fly ash (HVFA) cement according to the substitution rate of fly ash (FA). The hydration degree of cement and the reactivity of FA were evaluated through the selective dissolution method and the non-evaporable water content of the paste according to age. In addition, compressive strength was measured using HVFA mortar specimens according to age. As a result of the experiment, as the substitution rate of fly ash increased, the hydration degree of cement increased, but the reactivity of FA decreased.

Characteristics of Uncofined Compressive Strength and Flow in Controlled Low Strength Materials Made with Coal Ash (석탄회를 활용한 저강도고유동화재의 일축압축강도 및 플로우 특성)

  • Kong, Jin-Young;Kang, Hyoung-Nam;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2010
  • Controlled low strength material (CLSM) is a flowable mixture and does not need to be compacted. It is produced by mixing portland cement, fly ash, fine aggregates, water and chemical admixtures. Sand is the most commonly used fine aggregates in the conventional CLSM, but it is getting more and more difficult to obtain sand in Korea. In this study, the characteristics of unconfined compressive strength, flow and applicability of a new CLSM that is produced by mixing of pond ash, fly ash, water, cement are examined. An unconfined compressive strength satisfies the standard unconfined compressive strength (0.5~1.0 MPa) were obtained when the mixture ratio of pond ash and fly ash is 30:70~70:30, cement ratio is 3.0~5.0%, and water content is 31~34%. The results of flow test indicate that the mixture ratio of pond ash and fly ash which satisfy the standard How value (0.2 m) is 30:70~70:30.

A Geochemical Study on the Enrichment of Trace Elements in the Saline Ash Pond of a Bituminous-burning Power Plant in Korea (국내 모 유연탄 발전소의 석탄회 매립 염호수 내 미량원소 농집에 대한 지구화학적 연구)

  • Kim, Seok-Hwi;Choi, Seung-Hyun;Jeong, Gi Young;Lee, Jae-Cheol;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In present study, we geochemically investigated the fresh coal ashes and the saline ash pond of an electric power plant in Korea, which burns imported bituminous coals. The goals are to see the chemical changes of the ash pond by reaction with coal ashes and to investigate the relative leachability of elements from the ashes by reaction with saline waters. For this study, one fresh fly ash, one fresh bottom ash, and 7 water samples were collected. All the ash samples and 2 water samples were analyzed for 55 elements. The results indicated that the fly ashes are enriched with chalcophilic elements such as Cu, Zn, Ga, Ge, Se, Cd, Sb, Au, Pb, and B relative to other elements. On the other hand, concentrations of As, Ba, Co, Ga, Li, Mn, Mo, Sb, U, V, W, and Zr are much higher in the ash pond than those dissolved in the seawater. Ag, Bi, Li, Mo, Rb, Sb, Sc, Se, Sn, Sr, and W show high ratios of elemental concentrations in pond water to those in the fly ash. Our results imply that the leaching of trace elements is regulated by geochemical controls such as solubility and adsorption even though the trace elements are relatively enriched on the ash surfaces after the coal combustion due to their volatilities.

A Study on the Physical Properties and Cytotoxicity of Tooth Ash and Dental Procelain (치아회분(齒牙灰粉)과 도재복합(陶材複合) 매식체(埋植體)의 물리적(物理的) 성질(性質) 및 세포배양(細胞培養)에 의(依)한 조직친화성(組織親和性)에 관(關)한 연구(硏究))

  • Hoh, Ki-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.51-68
    • /
    • 1984
  • The purpose of this study is primarily to test the use value of tooth ash as an alternative material of the synthetic hydroxyapatite. For this purpose the author performed the experimental study to investigate the phsyical properties of sintered tooth ash and its histocompatibility in vitro. The tooth ash was made by incinerating procedure at $650^{\circ}C,\;750^{\circ}C,\;850^{\circ}C,\;950^{\circ}C\;and\;1050^{\circ}C$ respectively. The composition of tooth ash was analyzed and X-ray diffraction was done. The experimental specimens were molded to the cylinderical form 1 cm high, 1 cm in diameter under the pressure of $1000kg/cm^2$, which were divided into two groups; the one is sintered tooth ash at $1100^{\circ}C$ and the other is fired mixture of tooth ash and dental porcelain mixed to the weight ratio of 4:6, 5:5, 6:4 and 7:3. The physical propoerties of the sintered specimens were examined and their microstructure was observed under the Scanning Electron Microscope. The results obtained were as followings: 1. The difference of the tooth ash composition depending on incinerating temperature was of no significance, but the $CO_2$ disappeared from $950^{\circ}C$. 2. X-ray diffraction showed the tooth ash was mainly composed of hydroxyapatite and a small amount of - white lockite. But phase transformation was not disclosed. 3. The microstructure of the sintered specimens of the ashed tooth powder was of no difference in the structure and grain size accompanying the ashed temperature, but sintering ability seemed to be the best in the specimen incinerated at $950^{\circ}C$. 4. There was good wettability in the mixed sintered specimens of the ashed tooth powder and the porcelain powder. 5. The compressive strength of the sintered specimens of the tooth ash incinerated at $950^{\circ}C$ was the highest with $589.75kg/cm^2$ and the porosity and the absorption were the lowest as well. 6. The mixed sintered specimens of the tooth ash and porcelain powder was good in the physical properties in the case of mixed weight ratio of 6:4. 7. The animal fibroblast cultures with porcelain showed increase in the cell number, whereas the tooth ash showed a small degree of growth inhibition. But the difference of cell multiplication efficiency between control cultures and test cultures with tooth ash was not observed.

  • PDF

An Experimental Study on the Compressive Strength Properties of Sulfur-solidified Materials using Bottom Ash Fine Aggregate (바닥재 잔골재를 활용한 유황고형화 성형물의 압축강도 특성에 대한 실험적 연구)

  • Hong, Bumui;Choi, Changsik;Yun, Jungho;Eom, Minseop;Jeon, Sinsung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • Differently from fly ash, the bottom ash produced from thermal power generation has been treated as an industrial waste matter, and almost reclaimed or was applied with the additive of the part concrete. Bottom ash has various problems to use with the aggregate. Bottom ash is lighter than typically the sand or the gravel and it's physical properties (compressive strength etc.) is somewhat low because of high absorptance. In order to manufacture the ash concrete, we used a bottom ash as a main material and a pure sulfur as a binder. In this study, fundamental research methods that vary the grain-size of bottom ash and the ratio of sulfur vs ash were investigated to improve the quality of ash concrete such as compressive strength. Bottom ash in this research which occurs from domestic 4 place power plants, was checked physical and chemical properties. The compressive strength seems the result which simultaneously undergoes an influence in content of the sulfur and Bottom ash grain-size. We got the result of the maximum 92 MPa. The compressive strength was high result for grain size below 1.2 mm and high sulfur content.

Experimental Study on the Properties of Surface Treatment Fly Ash Using Arc Discharge (아크방전을 이용한 표면개질 플라이애시의 특성에 관한 실험적 연구)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Fly ash is a material used as a concrete admixture. When fly ash is used for concrete manufacturing, it is expected to improve the performance such as reduction of cement usage and increase of chemical resistance. However, fly ash have some problems such as unburned carbon content and amorphous film on the surface of fly ash particles. When concrete is manufactured using fly ash containing a large amount of unburned carbon, there is a problem that the slump is lowered due to adsorption of AE agent. In addition, the amorphous film on the surface of the particles prevents the reactive substances from leaching out of the fly ash. Therefore, a method of surface treatment of fly ash using plasma has been studied to remove such unburned carbon and amorphous films. However, plasma has the problem that $O_3$ is generated when $O_2$ is used as an active gas. $O_3$ is a harmful substance and adversely affects the health of the experimenter. In this study, the surface of fly ash was treatment by arc discharge. Experimental results show that the unburned carbon is removed when the surface of fly ash is treatment by arc discharge and the amorphous film was broken and the reactivity was improved. Therefore, it is considered that arc discharge can treatment the surface of fly ash and improve the quality of fly ash.

Fundamental Properties of Lightweight Concrete with Dry Bottom Ash as Fine Aggregate and Burned Artificial Lightweight Aggregate as Coarse Aggregate (건식 바텀애시 경량 잔골재와 소성 인공경량 굵은골재를 사용한 콘크리트의 기초 특성)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.267-274
    • /
    • 2018
  • Though the wet bottom ash has been used as a type of lightweight aggregate, dry bottom ash, new type bottom ash from coal combustion power plant, has scarcely researched. It is excellent lightweight aggregate in the view point of construction material. This study is performed to check the applicability of dry bottom ash as a fine aggregate in lightweight aggregate concrete, by analyzing various properties of fresh and hardened concrete. We get results that the slump of concrete is within the target range at less than 75% replacement rate of dry bottom ash, the air content is not affected by the replacement rate of dry bottom ash, the bleeding capacity is less than $0.025cm^3/cm^2$ at 75% under of the replacement rate of dry bottom ash, and the compressive strength of concrete show 90% or more comparing the base mix while initial strength development is a little low. Oven dry unit weight of concrete is reduced by 8.9% when replaced 100% dry bottom ash, and dry shrinkage tends to decrease depending on increase of replacement rate of dry bottom ash. Modulus of elasticity of concrete shows no decease at 50% over of the replacement rate of dry bottom ash, while modulus of elasticity of concrete decreases when the replacement rate increases further. The dry bottom ash, when used as a fine aggregate in lightweight concrete, can be used effectively without any deterioration in quality.