DOI QR코드

DOI QR Code

A Geochemical Study on the Enrichment of Trace Elements in the Saline Ash Pond of a Bituminous-burning Power Plant in Korea

국내 모 유연탄 발전소의 석탄회 매립 염호수 내 미량원소 농집에 대한 지구화학적 연구

  • Kim, Seok-Hwi (Department of Environmental Engineering, Kunsan National University) ;
  • Choi, Seung-Hyun (Department of Environmental Engineering, Kunsan National University) ;
  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University) ;
  • Lee, Jae-Cheol (Korea Western Power Co., Ltd.) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University)
  • Received : 2014.02.12
  • Accepted : 2014.03.26
  • Published : 2014.03.31

Abstract

In present study, we geochemically investigated the fresh coal ashes and the saline ash pond of an electric power plant in Korea, which burns imported bituminous coals. The goals are to see the chemical changes of the ash pond by reaction with coal ashes and to investigate the relative leachability of elements from the ashes by reaction with saline waters. For this study, one fresh fly ash, one fresh bottom ash, and 7 water samples were collected. All the ash samples and 2 water samples were analyzed for 55 elements. The results indicated that the fly ashes are enriched with chalcophilic elements such as Cu, Zn, Ga, Ge, Se, Cd, Sb, Au, Pb, and B relative to other elements. On the other hand, concentrations of As, Ba, Co, Ga, Li, Mn, Mo, Sb, U, V, W, and Zr are much higher in the ash pond than those dissolved in the seawater. Ag, Bi, Li, Mo, Rb, Sb, Sc, Se, Sn, Sr, and W show high ratios of elemental concentrations in pond water to those in the fly ash. Our results imply that the leaching of trace elements is regulated by geochemical controls such as solubility and adsorption even though the trace elements are relatively enriched on the ash surfaces after the coal combustion due to their volatilities.

본 연구에서는 유연탄을 원료로 하는 국내 모 화력발전소에서 발생하는 비회(fly ash)와 석탄회 매립염호수(saline ash pond)에 대하여 지구화학적으로 조사함으로써 석탄회와의 반응에 의한 매립호수의 수질변화와 염수와의 반응에 의한 석탄회내의 원소용출 특성을 고찰하였다. 이를 위해, 각각 1개씩의 비회와 바닥재, 그리고 7개의 매립호수 수질시료를 채취하였다. 이 중, 비회와 바닥재, 그리고 2개의 수질시료는 총 55개 항목의 미량금속원소에 대한 분석을 수행하였다. 비회 내에는 Cu, Zn, Ga, Ge, Se, Cd, Sb, Au, Pb, B 등과 같은 친황원소들의 함량이 비교적 높게 나타났다. 하지만, 매립호수 내에서는 해수에 비하여 As, Ba, Co, Ga, Li, Mn, Mo, Sb, U, V, W, Zr 등이 상대적으로 농집되어 있었다. 또한, 각 원소에 대하여 비회 내의 농도와 매립호수 내의 농도 비를 비교한 결과, Ag, Bi, Li, Mo, Rb, Sb, Sc, Se, Sn, Sr, W 등이 타 원소들과 비하여 매립호수에 농집되어 있는 것으로 나타났다. 이러한 결과는 상대적 휘발정도에 의해 일부 금속원소가 비회의 표면에 농집된다 하더라도 금속원소의 용출특성이 용해도나 흡착처럼 각 원소의 지화학적 거동 특성에 영향 받음을 의미하는 것이다.

Keywords

References

  1. 김강주, 이은규, 이재철, 황수연, 김창현 (2012) 태안화력 발전소 비회로부터 리튬추출연구. 한국광물학회지, 25, 117-122.
  2. 여성구 (2002) 해수-석탄회 반응에 대한 지화학적 현장 연구: 서천화력발전소 회처리장에 대하여. 석사학위논문, 군산대학교 환경공학과.
  3. 한국개발연구원 (2013) 공공기관 해외사업 예비타당성조사 수행을 위한 표준지침 연구.
  4. Arroyo, F., Fernández-Pereira, C. (2008) Hydrometallurgical recovery of germanium from coal gasification fly ash: solvent extraction method. Industrial and Engineering Chemistry Research, 47, 3186-3191. https://doi.org/10.1021/ie7016948
  5. Arroyo, F., Fernández-Pereira, C., Olivares, J., Coca, P. (2009) Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation. Industrial and Engineering Chemistry Research, 48, 3473-3579.
  6. Blissett, R.S., Rowson, N.A. (2012) A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1-23. https://doi.org/10.1016/j.fuel.2012.03.024
  7. Brami, Y., Herut, B., Shemesh, A., Cohen, H. (1999) Surface chemical characteristics of coal fly ash particles after interaction with seawater under natural deep sea conditions. Environmental Science and Technology, 33, 276-281. https://doi.org/10.1021/es9805573
  8. Clarke, L.B., Sloss, L.L. (1992) Trace element emmissions from coal combustion and gasification. London: IAEA Coal Research.
  9. Drever, L.I. (1997) Geochemisty of Natural Waters: The Surface and Groundwater Envionments. (3rd Ed.), Prentice-Hall Inc. Englewood Cliffs, NJ.
  10. Eary, L.E., Rai, D., Mattigod, S.V., Ainsworth, C.C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. Journal of Environmental Quality, 19, 202-214.
  11. Fernandez-Turiel, J.L., de Carvalho, W., Cabanas, M., Querol, X., Lopez-Soler, A. (1994) Mobility of heavy metals from coal fly ash. Environmental Geology, 23, 264-270. https://doi.org/10.1007/BF00766741
  12. Gitari, W.M., Petrik, L.F., Etchebers, O., Okujeni, C. (2008) Utilization of fly ash for treatment of coal mines wastewater: solubility controls on major inorganic contaminants. Fuel, 87, 2450-2462. https://doi.org/10.1016/j.fuel.2008.03.018
  13. Hassett, D.J., Pflughost-Hassett, D.F., Heebink, L.V. (2005) Leaching of CCBs: observations from over 25 years of research. Fuel, 84, 1378-1383. https://doi.org/10.1016/j.fuel.2004.10.016
  14. Hockley, D.E., van der Sloot, H.A. (1991) Long-term processes in stabilized coal wast blocks exposed to seawater. Environmental Science and Technology, 25, 1408-1414. https://doi.org/10.1021/es00020a007
  15. Iyer, R. (2002) The surface chemistry of leaching coal fly ash. Journal of Hazardous Materials, B93, 321-329.
  16. Izquierdo, M., Querol, X. (2012) Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94,54-66. https://doi.org/10.1016/j.coal.2011.10.006
  17. Jankowski, J., Ward, C.R., French, D., Groves, S. (2006) Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel, 85, 243-256. https://doi.org/10.1016/j.fuel.2005.05.028
  18. Jones, D.R. (1995) The leaching of major and trace elements from coal ash. In: Swaine, D.J., Goodarzi, F. (Eds.), Environmental Aspects of Trace Elements in Coal. Springer.
  19. Kim, K., Park, S.M., Kim, J., Kim, S.H., Kim, Y., Moon, J.T., Hwang, G.S., Cha, W.S. (2009) Arsenic concentration in porewater of an alkaline coal ash disposal site: Roles of siderite precipitation/dissolution and soil cover. Chemosphere, 77, 222-227. https://doi.org/10.1016/j.chemosphere.2009.07.029
  20. Kim, K., Kim, S.H., Park, S.M., Kim, J., Choi, M. (2010) Processes controlling the variations of pH, alkalinity, and CO2 partial pressure in the porewater of coal ash disposal site. Journal of Hazardous Materials, 181, 74-81. https://doi.org/10.1016/j.jhazmat.2010.04.089
  21. Martinez-Tarazona, M.R., Spears, D.A. (1996) The fate of trace elements and bulk minerals in pulverized coal combustion in a power station. Fuel Process Technology, 47, 79-92. https://doi.org/10.1016/0378-3820(96)01001-6
  22. Marttigod, S.V., Rai, D., Eary, L.E., Ainsworth, C.C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. Journal of Environmental Quality, 19, 188-201.
  23. Natusch, D.F.S., Wallace, J.R., Evans, C.A. (1974) Toxic trace elements: preferential concentration in respirable particles. Science, 183, 202-204. https://doi.org/10.1126/science.183.4121.202
  24. Reijnders, L. (2005) Disposal, uses and treatments of combustion ashes: a review. Resources Conservation and Recycling, 43, 313-336. https://doi.org/10.1016/j.resconrec.2004.06.007

Cited by

  1. Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations vol.29, pp.2, 2016, https://doi.org/10.9727/jmsk.2016.29.2.59
  2. 석탄재의 콘크리트 활용에 따른 중금속 함량변화 연구 vol.51, pp.4, 2014, https://doi.org/10.9719/eeg.2018.51.4.371
  3. 분쇄방법에 따른 석탄재 재활용 콘크리트의 중금속 분석결과 및 용출특성 변화 vol.51, pp.5, 2014, https://doi.org/10.9719/eeg.2018.51.5.429