• 제목/요약/키워드: Asexual development

검색결과 57건 처리시간 0.019초

Promotion of Asexual Development and Inhibition of Sexual Development of Aspergillus nidulans by Short-Chain Primary Amines

  • Song, Myung-Hoon;Kuppusamy Selvam;Park, Chang-Jun;Jahng, Kwang-Yeop;Han, Dong-Min;Chae, Keon-Sang
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.230-233
    • /
    • 2002
  • Effects of short-chain primary amines on Aspergillus nidulans development were analyzed. Propylamine induced asexual development and inhibited sexual development. Even on medium containing lactose as the sole carbon source, on which little conidial heads are formed and sexual structures are formed preferentially, or when sexual development was induced, propylamine induced asexual development and inhibited sexual development. These effects of propylamine seemed to be due to accumulation of mRNA of the brlA gene, which has been identified as a positive regulator of asexual development, and due to the reduction of the veA mRNA level. The veA gene has been identified as an activator of sexual development and also as an inhibitor of asexual development. Other primary amines, methylamine and ethylamine, showed identical effects on development where short-chain primary amino also promoted asexual development and inhibited sexual development.

각종 탄소원이 $velA^+$ 및 velA1 Aspergillus nidulans의 분화에 미치는 영향 (Effect of Various Carbon Sources on the Development of Aspergillus nidulans with $velA^+$ or velA1 allele)

  • 한동민;한유정;채건상;장광엽;이영훈
    • 한국균학회지
    • /
    • 제22권4호
    • /
    • pp.332-337
    • /
    • 1994
  • Under standard condition (Han, et al., 1990: glucose 1%-nitrate 0.1% minimal medium, 30 ml in 9 cm plate, $10^6$ cells of inoculum per plate), wild type of Aspergillus nidulans developed both sexual and asexual organs in ballance, while velA1 mutant developed asexual ones preferentially. Increase of glucose concentration did not significantly affect the asexual sporulation. However, development of sexual organs were largely affected. It was greatly enhanced when favorable nitrogen source, for example, casein hydrolysate was added, which is contrary to the case of Neurospora or Saccharomyces where limitation of N source induces sexual development. On most of moderate C sources asexual development in $velA^+$ strain was largely inhibited except acetate on which only asexual spores were produced, while that in velA1 mutant strain was not affected. Lactose promoted the sexual development even in velA1 mutant indicating that lactose itself or its metabolic intermediate may induce sexual development independent of allelic state of velA gene. On other moderate favorable C sources, glycerol, galactose and ethanol, asexual development was largely inhibited in $velA^+$ strain but not in velA1 mutant strain. Sexual organs were, however, never produced on acetate. These results suggested that asexual development of wild type is largely dependent on C sources and the velA gene is involved in the repression of asexual development in not-enough-grown (non-competent) thalli resulting in preferential progression of sexual development.

  • PDF

Environmental factors affecting development of Aspergillus nidulans

  • Han, Kap-Hoon;Lee, Dong-Beom;Kim, Jong-Hak;Kim, Min-Su;Han, Kyu-Yong;Kim, Won-Shin;Park, Young-Soon;Kim, Heui-Baik;Han, Dong-Min
    • Journal of Microbiology
    • /
    • 제41권1호
    • /
    • pp.34-40
    • /
    • 2003
  • Aspergillus nidulans, a homothalic ascomycete, has a complete sexual reproductive cycle as well as an asexual one. Both sexual and asexual development are known to be genetically programmed, but are also strongly affected by environmental factors including nutrients, light, temperature and osmolarity. We have examined these factors to define favored conditions for fruiting body (cleistothecium) formation. In general, fruiting body formation was enhanced where carbon and nitrogen sources were sufficient. Limitation of C-source caused predominant asexual development while inhibiting sexual development. When higher concentrations of glucose were supplied, more cleistothecia were formed. Other carbon sources including lactose, galactose and glycerol made the fungus develop cleistothecia very well, whereas acetate caused asexual sporulation only. Organic nitrogen sources like casein hydrolysate and glycine, and an increase in nitrate or ammonium concentration also enhanced sexual development. In addition to nutrient effects, low levels of aerobic respiration, caused either by platesealing or treatment with various chemicals, favored sexual development. Carbon limitation, light exposure and a high concentration of salts promoted asexual development preferentially, suggesting that stress conditions may drive the cell to develop asexual sporulation while comfortable and wellnourished growth conditions favored sexual development.

Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans

  • Son, Sung-Hun;Jang, Seo-Yeong;Park, Hee-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.676-685
    • /
    • 2021
  • RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.

Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

  • Park, Yong-Soon;Park, Kyungseok;Kloepper, Joseph W.;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.310-315
    • /
    • 2015
  • Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans

  • Seo-Yeong Jang;Ye-Eun Son;Dong-Soon Oh;Kap-Hoon Han;Jae-Hyuk Yu;Hee-Soo Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1420-1427
    • /
    • 2023
  • The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.

Conserved Roles of MonA in Fungal Growth and Development in Aspergillus Species

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.457-465
    • /
    • 2019
  • MonA is a subunit of a guanine nucleotide exchange factor that is important for vacuole passing and autophagy processes in eukaryotes. In this study, we characterized the function of MonA, an orthologue of Saccharomyces cerevisiae Mon1, in the model fungus Aspergillus nidulans and a toxigenic fungus A. flavus. In A. nidulans, the absence of AnimonA led to decreased fungal growth, reduced asexual reproduction, and defective cleistothecia production. In addition, AnimonA deletion mutants exhibited decreased spore viability, had reduced trehalose contents in conidia, and were sensitive to thermal stress. In A. flavus, deletion of AflmonA caused decreased fungal growth and defective production of asexual spores and sclerotia structures. Moreover, the absence of monA affected vacuole morphology in both species. Taken together, these results indicate that MonA plays conserved roles in controlling fungal growth, development and vacuole morphology in A. nidulans and A. flavus.

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun;Lee, Song Hee;Oh, Young Taek;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.314-322
    • /
    • 2020
  • Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.

소에 감염(感染)된 주육포자충(住肉胞子蟲) 무성생식(無性生殖) 증식형(增殖型)에 대(對)한 실험실적(實驗室的) 진단(診斷) (Laboratory Diagnosis for Sarcocystis Asexual Stages in Cattle)

  • 강영배;장환
    • 대한수의학회지
    • /
    • 제28권1호
    • /
    • pp.155-163
    • /
    • 1988
  • For the laboratory diagnosis of Sarcocystis infections especially in domesticated food animals, several antificial digestion techniques were applied for the musculature specimens and several staining techniques was applied for the bradyzoites of Sarcocystis species isolated. The digestion technique using trypsin(0.5%) and sodium chloride(0.85%) mixed solution was regarded as the most valuable for the detection of asexual stages of Sarcocystis in bovine musculature specimens. Optimal time for digestion was approximately one to four hours. The trypsion digestion technique with Giemsa's stain could be helpful for the detection of Sarcocystis prolferative forms and for the observation of the nucleus of the parasite. A systematic detection was also performed in an autopsy for a bovine carcass naturally infected with Sarcocystis species, and the asexual stages such as metrocytes and bradyzoites were observed in the specific organs, respectively.

  • PDF

Aspergillus nidulans에 있어서 무성분화(無成分化)의 억제조건(抑制條件)과 이를 이용(利用)한 유성분화결손(有性分化缺損) 돌연변이주(突然變異株)의 대량분리(大量分離) (Inhibitory Conditions of Asexual Development and their Application for the Screening of Mutants Defective in Sexual Development)

  • 한동민;한유정;이영훈;장광엽;장승환;채건상
    • 한국균학회지
    • /
    • 제18권4호
    • /
    • pp.225-232
    • /
    • 1990
  • 몇몇 배양조건이 유성 또는 무성분화에 미치는 영향을 조사하여, 유성분화 결손 돌연변이주를 분리하기 위한 효율적인 조건을 찾고자 하였다. 무성분화는 억제하며, 유성분화는 촉진시키는 여러조건중 Casein hydrolysate를 첨가한 최소배지에 밀봉 배양하는 것이 가장 효율적인 조건으로 선택되었다. 접종 후 20시간 이전에 밀봉하고 계속 배양하면, 유 무성분화 모두가 억제되나, 밀봉 후 20시간 정도 후에 밀봉을 해제하면 유성분화만이 진행되었다. 이러한 성질을 이용하여 유성분화과정에 이상이 일어난 돌연변이주를 대랑 분리해 냈었으며, 이들의 분화양상에 따라 크게 3 group : NSD(never in sexual development), BSD(block in sexual development), ASD(abnormal in sexual development)으로 분류하였다. NSD 돌연변이주는 $H{\ddot{u}}lle$ cell이나 cleistothecia 등의 유성생식기관을 전혀 생성하지 못하였고, BSD 돌연변이주는 $H{\ddot{u}}lle$ cell, cleistothecia, crozier, asci 또는 ascospore 형성 중 어느 과정에서 중단되어 분화가 끝가지 진행되지 못하였으며, ASD 돌연변이주는 유성분화의 최종단계가지 진행은 되지만 유성생식 기관의 생성시기나 양이 야생형과 현저하게 차이를 보였다.

  • PDF