Browse > Article
http://dx.doi.org/10.1080/12298093.2019.1677380

Conserved Roles of MonA in Fungal Growth and Development in Aspergillus Species  

Son, Ye-Eun (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University)
Park, Hee-Soo (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University)
Publication Information
Mycobiology / v.47, no.4, 2019 , pp. 457-465 More about this Journal
Abstract
MonA is a subunit of a guanine nucleotide exchange factor that is important for vacuole passing and autophagy processes in eukaryotes. In this study, we characterized the function of MonA, an orthologue of Saccharomyces cerevisiae Mon1, in the model fungus Aspergillus nidulans and a toxigenic fungus A. flavus. In A. nidulans, the absence of AnimonA led to decreased fungal growth, reduced asexual reproduction, and defective cleistothecia production. In addition, AnimonA deletion mutants exhibited decreased spore viability, had reduced trehalose contents in conidia, and were sensitive to thermal stress. In A. flavus, deletion of AflmonA caused decreased fungal growth and defective production of asexual spores and sclerotia structures. Moreover, the absence of monA affected vacuole morphology in both species. Taken together, these results indicate that MonA plays conserved roles in controlling fungal growth, development and vacuole morphology in A. nidulans and A. flavus.
Keywords
MonA; asexual development; Aspergillus nidulans; Aspergillus flavus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41(11):973-981.   DOI
2 Shaaban MI, Bok JW, Lauer C, et al. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell. 2010;9(12):1816-1824.   DOI
3 Park HS, Bayram O, Braus GH, et al. Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol. 2012;86(4):937-953.   DOI
4 Park HS, Lee MK, Kim SC, et al. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS ONE. 2017;12(5):e0177099.   DOI
5 Ni M, Yu JH. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One. 2007;2(10):e970.   DOI
6 Eom TJ, Moon H, Yu JH, et al. Characterization of the velvet regulators in Aspergillus flavus. J Microbiol. 2018;56(12):893-901.   DOI
7 Gao HM, Liu XG, Shi HB, et al. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol. 2013;164(4):300-309.   DOI
8 Cabrera M, Engelbrecht-Vandre S, Ungermann C. Function of the Mon1-Ccz1 complex on endosomes. Small GTPases. 2014;5(3):e972861-e972863.   DOI
9 Kwon NJ, Shin KS, Yu JH. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol. 2010;47(12):981-993.   DOI
10 He ZM, Price MS, Obrian GR, et al. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol. 2007;7(1):104.   DOI
11 Casselton L, Zolan M. The art and design of genetic screens: filamentous fungi. Nat Rev Genet. 2002;3(9):683-697.   DOI
12 Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310-350.   DOI
13 Schuster E, Dunn-Coleman N, Frisvad JC, et al. On the safety of Aspergillus niger-a review. Appl Microbiol Biotechnol. 2002;59:426-435.   DOI
14 Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438(7071):1157-1161.   DOI
15 Yu JH, Keller N. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43(1):437-458.   DOI
16 Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998;62(1):35-54.   DOI
17 Kumar P, Mahato DK, Kamle M, et al. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol. 2016;7:2170.
18 Luk KC, Kobbe B, Townsend JM. Production of cyclopiazonic acid by Aspergillus flavus Link. Appl Environ Microbiol. 1977;33(1):211-212.   DOI
19 Nickel W, Brugger B, Wieland FT. Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci. 2002;115(Pt 16):3235-3240.   DOI
20 Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631-643.   DOI
21 Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990;54(3):266-292.   DOI
22 Price A, Seals D, Wickner W, et al. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol. 2000;148(6):1231-1238.   DOI
23 Nordmann M, Cabrera M, Perz A, et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol. 2010;20(18):1654-1659.   DOI
24 Sato TK, Rehling P, Peterson MR, et al. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell. 2000;6(3):661-671.   DOI
25 Hughes TE, Zhang H, Logothetis DE, et al. Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J Biol Chem. 2001;276:4227-4235.   DOI
26 Brocker C, Kuhlee A, Gatsogiannis C, et al. Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc Natl Acad Sci USA. 2012;109(6):1991-1996.   DOI
27 Wang CW, Stromhaug PE, Kauffman EJ, et al. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol. 2003;163(5):973-985.   DOI
28 Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA. 2006;103(32):11821-11827.   DOI
29 Wang CW, Stromhaug PE, Shima J, et al. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem. 2002;277(49):47917-47927.   DOI
30 Li Y, Li B, Liu L, et al. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep. 2015;5(1):18101.
31 Son YE, Jung WH, Oh SH, et al. Mon1 is essential for fungal virulence and stress survival in Cryptococcus neoformans. Mycobiology. 2018;46(2):114-121.   DOI
32 Kafer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet. 1977;19:33-131.   DOI
33 Barratt RW, Johnson GB, Ogata WN. Wild-type and mutant stocks of Aspergillus nidulans. Genetics. 1965;52(1):233-246.   DOI