• 제목/요약/키워드: As(V) ion

검색결과 1,276건 처리시간 0.038초

Direct Determination of Total Arsenic and Arsenic Species by Ion Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry

  • Nam, Sang-Ho;Kim, Jae-Jin;Han, Soung-Sim
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1805-1808
    • /
    • 2003
  • The simultaneous determination of As(III), As(V), and DMA has been performed by ion chromatography (IC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). The separation of the three arsenic species was achieved by an anionic separator column (AS 7) with an isocratic elution system. The separated species were directly detected by ICP-MS as an element-selective detection method. The IC-ICP-MS technique was applied for the determination of arsenic species in a NIST SRM 1643d water sample. An As(III) only was detected in the sample. The detection limits of As(III), As(V) and DMA were 0.31, 0.45, and 2.09 ng/mL, respectively. It was also applied for the determination of arsenic species in a human urine obtained by a volunteer, and three arsenic species were identified. The determination of total As in human urines that were obtained from 25 volunteers at the different age was also carried out by ICP-MS.

방사선 중합에 의한 설폰화 POF-g-Styrene 이온교환 섬유의 합성 및 암모니아 흡착 (Synthesis of Sulfonated POF-g-Styrene ion Exchange Fibers by Radiation-Induced Polymerization and Properties of Ammonia Adsorption)

  • 조인희;백기완;이창수;노영창;윤수경;황택성
    • 폴리머
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2007
  • 본 연구는 $Co^{60}\;{\gamma}-ray$ 선원을 이용한 그래프트 공중합 방법으로 설폰형 이온교환 섬유를 합성하였다. 공중합체 합성 시 스티렌 단량체의 농도가 50 v/v%에서 그래프트율이 가장 높게 나타났으며, 총 조사선량이 증가할수록 그래프트율은 증가하였다. 그래프트율과 반응온도가 증가함에 따라 설폰화율은 증가하였으며, 반응시간 20분에서 가장 높았다. 이온교환 섬유의 이온교환 용량과 함수율은 설폰화율이 증가함에 따라 모두 증가하였으며, 각각 최대 4.76 meq/g, 23.5%이었다. 암모니아 흡착량은 이온교환 용량 및 암모니아 농도가 증가함에 따라 증가하였으며, 10회 이상 반복 사용하여도 암모니아 흡착량은 변하지 않았다.

Development and Test of ion Source with Small Orifice Cold Cathode

  • G. E. Bugrov;S. K. Kondranin;E. A. Kralkina;V. B. Pavlov;K. V. Vavilin;Lee, Heon-Ju
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제5권1호
    • /
    • pp.19-24
    • /
    • 2001
  • The paper represents the results of the development and the test of "cold cathode" ion source model with 5 cm aperture where the glow discharge is utilized for generation of electrons in the cathode of the ion source. The results of probe measurements of the ion source are represented. The integral parameters such as electron energy distribution function(EEDF), electron density and mean electron energy, discharge voltage-current characteristics, and distribution of ion beam were studied.

  • PDF

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권4호
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.

스마트폰 배터리 보호회로 모듈에 대한 정전기 방전 실험 (Electrostatic Discharge Experiment for Smartphone Battery Protection Circuit Module)

  • 유종경;박경제;전성혁;여준호;조영기;이대헌;김종규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.53-54
    • /
    • 2017
  • 본 논문에서는 스마트폰 배터리로 사용되는 리튬 이온 배터리에서 과충전, 과방전, 단락 등으로 인한 폭발 위험성을 막기 위해 사용되는 배터리 보호회로 모듈에 대한 정전기 방전 실험을 연구하였다. 실험 시료로 S사의 리튬이온 배터리를 사용하였고, 정전기 방전 인가를 위해 IEC 61000-4-2 표준에 호환되는 ESD Gun simulator를 사용하였다. 배터리 보호회로 모듈의 여러 핀에 2kV ~ 10kV에서는 2kV 단위로 증가시키고, 10kV ~ 30kV에서는 5kV단위로 증가시켜 접촉방전을 인가하였다.

  • PDF

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

이온주입장치의 원격제어시스템 구축 (Remote Control System of Ion Implanter)

  • 이재형;양대정
    • 제어로봇시스템학회논문지
    • /
    • 제9권12호
    • /
    • pp.1042-1047
    • /
    • 2003
  • The goal of this research is to implement a PC-based remote control system of ion implanter using Visual Basic programming. Presently, skilled process engineers are required to regularly setup and adjust implanter parameters. Any reduction in the number of production hours devoted to ion beam implanter setup or recalibration after a species change would represent substantial improvements in both manpower and equipment utilization. An optical communication system for the remote control and telemetry in the operation of the 50kev potential was designed and constructed. This system enables continuous and safe operation of the ion implanter and can be the basis for the automation. The isolation characteristics of optical fiber were 10kV/cm, and performance tests of the system under the intense noise environment during the implanter operations showed satisfactory results. This system is designed to completely replace the existing human-machine interface with many new functions. This paper describes the important components of the system including system architecture and software development. It is expected that this system can be used for the communication and control purpose in the high noise environments such as the operation of the MeV energy implanter or other high power, high noise systems.

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Singh, Sanjay;Rani, Geeta
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2229-2237
    • /
    • 2012
  • The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.

방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성 (The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage)

  • 박종광;한태희;정동철;임성훈;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF

Lower the Detection Limits of Accelerator Mass Spectrometry

  • ;송종한;김준곤;김재열;오종주;김종찬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.243-244
    • /
    • 2013
  • Over the past 15 years, several groups have incorporated radio-frequency quadrupole (RFQ) based instruments before the accelerator in accelerator mass spectrometry (AMS) systems for ion-gas interactions at low kinetic energy (<40 eV). Most AMS systems arebased on a tandem accelerator, which requires negative ions at injection. Typically, AMS sensitivity abundance ratios for radioactive-to-stable isotope are limited to Xr/Xs >10^-15, and the range of isotopes that can be analyzed is limited because of theneed to produce rather large negative ion beams and the presence of atomic isobaric interferences after stripping. The potential of using low-kinetic energy ion-gas interactions for isobar suppression before the accelerator has been demonstrated for several negative ion isobar systems with a prototype RFQ system incorporated into the AMS system at IsoTrace Laboratory, Canada (Ontario, Toronto). Requisite for any such RFQ system applied to very rare isotope analysis is large transmission of the analyte ion. This requires proper phase-space matching between the RFQ acceptance and the ion beam phase space (e.g. 35 keV, ${\varphi}3mm$, +-35 mrad), and the ability to control the average ion energy during interactions with the gas. A segmented RFQ instrument is currently being designed at Korea Institute for Science and Technology (한국과학기술연구원, KIST). It will consist of: a) an initial static voltage electrode deceleration region, to lower the ion energy from 35 keV down to <40 eV at injection into the first RFQ segment; b) the segmented quadrupole ion-gas interaction region; c) a static voltage electrode re-acceleration region for ion injection into a tandem accelerator. Design considerations and modeling will be discussed. This system should greatly lower the detection limits of the 6 MV AMS system currently being commissioned at KIST. As an example, current detection sensitivity of 41Ca/Ca is limited to the order of 10^-15 while the 41Ca/Ca abundance in modern samples is typically 41Ca/Ca~10^-14 - 10^-15. The major atomic isobaric interference in AMS is 41K. Proof-of-principal work at IsoTrace Lab. has demonstrated that a properly designed system can achieve a relative suppression of KF3-/41CaF3- >4 orders of magnitude while maintaining very high transmission of the 41CaF3- ion. This would lower the 41Ca detection limits of the KIST AMS system to at least 41Ca/Ca~10^-19. As Ca is found in bones and shells, this would potentially allow direct dating of valuable anthropological archives and archives relevant to our understanding of the most pronounced climate change events over the past million years that cannot be directly dated with the presently accessible isotopes.

  • PDF