DOI QR코드

DOI QR Code

Direct Determination of Total Arsenic and Arsenic Species by Ion Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry

  • Nam, Sang-Ho (Department of Chemistry, Mokpo National University) ;
  • Kim, Jae-Jin (Department of Chemistry, Mokpo National University) ;
  • Han, Soung-Sim (Department of Chemistry, Mokpo National University)
  • Published : 2003.12.20

Abstract

The simultaneous determination of As(III), As(V), and DMA has been performed by ion chromatography (IC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). The separation of the three arsenic species was achieved by an anionic separator column (AS 7) with an isocratic elution system. The separated species were directly detected by ICP-MS as an element-selective detection method. The IC-ICP-MS technique was applied for the determination of arsenic species in a NIST SRM 1643d water sample. An As(III) only was detected in the sample. The detection limits of As(III), As(V) and DMA were 0.31, 0.45, and 2.09 ng/mL, respectively. It was also applied for the determination of arsenic species in a human urine obtained by a volunteer, and three arsenic species were identified. The determination of total As in human urines that were obtained from 25 volunteers at the different age was also carried out by ICP-MS.

Keywords

References

  1. Infante, H. G.; Campenhout, K. V.; Blust, R.; Adams, F. C. J. Anal. At. Spectrom. 2002, 17, 79. https://doi.org/10.1039/b108354f
  2. McSheehy, S.; Pannier, F.; Szpunar, J.; Gautier, M. P.; Lobinski, R. J. Anal. At. Spectrom. 2002, 127, 223.
  3. Moreno, P.; Quijano, M. A.; Gutierrez, A. M.; Perez-Conde, M. C.; Camara, C. J. Anal. At. Spectrom. 2001, 16, 1044. https://doi.org/10.1039/b102509k
  4. Suoer, M. A.; Devesa, V.; Muooz, O.; Velez, D.; Montoro, R. J. Anal. At. Spectrom. 2001, 16, 390. https://doi.org/10.1039/b007518n
  5. Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S. J. Anal. At. Spectrom. 2001, 16, 299. https://doi.org/10.1039/b007241i
  6. Marchante-Gayon, J. M.; Feldmann, I.; Thomas, C.; Jakubowski, N. J. Anal. At. Spectrom. 2001, 16, 457. https://doi.org/10.1039/b008649p
  7. Sheppard, B. S.; Caruso, J. A.; Heitkemper, D. T.; Wolnik, K. A. Analyst 1992, 117, 971. https://doi.org/10.1039/an9921700971
  8. Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S. J. Anal. At. Spectrom. 2001, 16, 299. https://doi.org/10.1039/b007241i
  9. Le, X. C.; Li, X.-F.; Lai, V.; Ma, M.; Yalcin, S.; Feldmann, J. Spectrochim. Acta, Part B 1998, 53, 899. https://doi.org/10.1016/S0584-8547(98)00105-0
  10. Ipoiyi, I.; Fodor, P. Anal. Chim. Acta 2000, 413, 13. https://doi.org/10.1016/S0003-2670(00)00817-5
  11. Martinez, A.; Morales-Rubio, A.; Cervera, M. L.; Guardia, de la M. J. Anal. At. Spectrom. 2001, 16, 762. https://doi.org/10.1039/b101811f
  12. Muooz, O.; Velez, D.; Montoro, R.; Arroyo, A.; Zamorano, M. J. Anal. At. Spectrom. 2000, 15, 711. https://doi.org/10.1039/b001340o
  13. Ali, I.; Aboul-Enein, H. Y. Chemosphere 2002, 48, 275. https://doi.org/10.1016/S0045-6535(02)00085-1
  14. Tukai, R.; Maher, W. A.; McNaught, I. J.; Ellwood, M. J. Anal. Chim. Acta 2002, 457, 173. https://doi.org/10.1016/S0003-2670(02)00018-1
  15. Gallardo, M. V.; Bohari, Y.; Astruc, A.; Potin-Gautier, M.; Astruc, M. Anal. Chim. Acta 2001, 441, 257. https://doi.org/10.1016/S0003-2670(01)01114-X
  16. McSheehy, S.; Pohl, P.; Lobinski, R.; Szpunar, J. Anal. Chim. Acta 2001, 440, 3. https://doi.org/10.1016/S0003-2670(01)00906-0
  17. Francesconi, K.; Visoottiviseth, P.; Sridokchan, W.; Goessler, W. Sci. Total Environ. 2002, 284, 27. https://doi.org/10.1016/S0048-9697(01)00854-3
  18. Polesello, S.; Valsecchi, S.; Cavalli, S.; Reschiotto, C. J. Chromatogr. 2001, 920, 231. https://doi.org/10.1016/S0021-9673(01)00745-2
  19. Martinez-Bravo, Y.; Roig-Navarro, A. F.; Lopez, F. J.; Hernandez, F. J. Chromatogr. 2001, 926, 265. https://doi.org/10.1016/S0021-9673(01)01062-7
  20. Larsen, E. H.; Pritzl, G.; Hansen, S. H. J. Anal. At. Spectrom. 1993, 8, 557. https://doi.org/10.1039/ja9930800557
  21. Wrobel, K.; Wrobel, K.; Parker, B.; Kannamkumarath, S. S.; Caruso, J. A. Talanta 2002, 58, 899. https://doi.org/10.1016/S0039-9140(02)00404-6
  22. Anawar, H. M.; Aki, J.; Mostofa, K. M. G.; Safiullah, S.; Tareq, S. M. Environment International 2002, 27, 597. https://doi.org/10.1016/S0160-4120(01)00116-7
  23. Gray, A. L. Analyst 1975, 100, 289. https://doi.org/10.1039/an9750000289
  24. Houk, R. S.; Fassel, V. A.; Flesch, G. D.; Svec, H. J.; Gray, A. L.; Taylor, C. E. Anal. Chem. 1980, 52, 2283. https://doi.org/10.1021/ac50064a012
  25. Jarvis, K. E.; Gray, A. L.; Houk, R. S. Handbook of Inductively Coupled Plasma Mass Spectrometry; Chapman and Hall: New York, 1992.
  26. J. Anal. At. Spectrom. v.16 Heitkemper, D. T.;Vela, N. P.;Stewart, K. R.;Westphal, C. S.
  27. J. Anal. At. Spectrom. v.16 Heitkemper, D. T.;Vela, N. P.;Stewart, K. R.;Westphal, C. S. https://doi.org/10.1039/b007241i

Cited by

  1. An Investigation on Inorganic Arsenic in Seaweed by Ion Chromatography Combined with Inductively Coupled Plasma-Atomic Emission Spectrometry vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3206
  2. A Study on Arsenic Speciation in Korean Oyster Samples using Ion Chromatography Inductively Coupled Plasma Mass Spectrometry vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10059
  3. Total Arsenic and Arsenic Species in Seaweed and Seafood Samples Determined by Ion Chromatography Coupled with Inductively Coupled End-on-Plasma Atomic Emission Spectrometry vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.10993
  4. Characterization of iron-modified carbon paste electrodes and their application in As(V) detection vol.46, pp.2, 2016, https://doi.org/10.1007/s10800-015-0903-3
  5. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China vol.189, pp.9, 2017, https://doi.org/10.1007/s10661-017-6153-6
  6. Arsenic speciation in water and biota samples at trace levels by ion chromatography inductively coupled plasma-mass spectrometry vol.97, pp.7, 2017, https://doi.org/10.1080/03067319.2017.1346089
  7. Current literature in mass spectrometry vol.39, pp.10, 2004, https://doi.org/10.1002/jms.711
  8. Feasibility of Separation and Quantification of Inorganic Arsenic Species Using Ion-Exchange Membranes and Laser-Induced Breakdown Spectroscopy vol.51, pp.17, 2018, https://doi.org/10.1080/00032719.2018.1453517
  9. Atomic spectrometry update. Clinical and biological materials, foods and beverages vol.20, pp.4, 2005, https://doi.org/10.1039/b501936b
  10. Optimisation by experimental design of an IEC/ICP-MS speciation method for arsenic in seafood following microwave assisted extraction vol.22, pp.9, 2007, https://doi.org/10.1039/b705798a
  11. Cytotoxicity of arsenic-containing chemical warfare agent degradation products with metallomic approaches for metabolite analysis vol.1, pp.1, 2003, https://doi.org/10.1039/b816980b
  12. Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode vol.31, pp.11, 2003, https://doi.org/10.5012/bkcs.2010.31.11.3077