• Title/Summary/Keyword: As₄O/sub 6/

Search Result 1,811, Processing Time 0.031 seconds

The Coating Effects of Al2O3 on a Li[Li0.2Mn0.54Co0.13Ni0.13]O2 Surface Modified with (NH4)2SO4

  • Oh, Ji-Woo;Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1516-1522
    • /
    • 2014
  • A series of 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ surface treatments were applied to $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates. The $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates were synthesized using a co-precipitation method. Sample (a) was left pristine and variations of the 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ were applied to samples (b), (c) and (d). XRD was used to verify the space group of the samples as R$\bar{3}$m. Additional morphology and particle size data were obtained using SEM imagery. The $Al_2O_3$ coating layers of sample (b) and (d) were confirmed by TEM images and EDS mapping of the SEM images. 2032-type coin cells were fabricated in a glove box in order to investigate their electrochemical properties. The cells were charged and discharged at room temperature ($25^{\circ}C$) between 2.0V and 4.8V during the first cycle. The cells were then charged and discharged between 2.0V and 4.6V in subsequent cycles. Sample (d) exhibited lower irreversible capacity loss (ICL) in the first charge-discharge cycle as compared to sample (c). Sample (d) also had a higher discharge capacity of ~250 mAh/g during the first and second charge-discharge cycles when compared with sample (c). The rate capability of the $Al_2O_3$-coated sample (b) and (d) was lower when compared with sample (a) and (c). Sample (d), coated with $Al_2O_3$ after the surface treatment with $(NH_4)_2SO_4$, showed an improvement in cycle performance as well as an enhancement of discharge capacity. The thermal stability of sample (d) was higher than that of the sample (c) as the result of DSC.

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

The Study on the Catalytic Performance and Characterization of La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru) for High Temperature Water-gas Shift Reaction with Simuated Coal-derived Syngas (모사된 석탄가스화 합성가스를 이용한 La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru)의 수성가스전이반응 활성 및 특성에 관한 연구)

  • Lee, Seul-Gi;Kwak, Jaehoom;Sohn, Jung Min
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.543-549
    • /
    • 2013
  • In this study, $La_{0.9}Sr_{0.1}Cr_{0.7}M_{0.3}O_{3{\pm}{\delta}}$ (M=Mn, Ru, Fe, Ni) were prepared by sol-gel method and water gas shift reaction with simulated coal-derived syngas between $400{\sim}650^{\circ}C$ was conducted to evaluate the catalytic activity of prepared catalysts. Physico-chemical properties were characterized by XRD, BET, SEM-EDS and TPR. The formation of perovskite crystallite, $LaCrO_3$ was confirmed and the highest surface area was measured with $La_{0.9}Sr_{0.1}Cr_{0.7}Mn_{0.3}O_{3{\pm}{\delta}}$. Equilibrium conversion of CO above $550^{\circ}C$ was achieved except $La_{0.9}Sr_{0.1}Cr_{0.7}Fe_{0.3}O_{3{\pm}{\delta}}$. and methanation reaction was carried out as side reaction of water gas shift reaction with $La_{0.9}Sr_{0.1}Cr_{0.7}Ni_{0.3}O_{3{\pm}{\delta}}$ and $La_{0.9}Sr_{0.1}Cr_{0.7}Ru_{0.3}O_{3{\pm}{\delta}}$. Conclusively, $La_{0.9}Sr_{0.1}Cr_{0.7}M_n{0.3}O_{3{\pm}{\delta}}$ was the most suitable catalyst of water gas shift reaction above $500^{\circ}C$ for CO conversion and hydrogen production.

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Synthesis and Characterization of MoS2/Graphene-TiO2 Ternary Photocatalysts for High-Efficiency Hydrogen Production under Visible Light

  • Zhang, Feng-Jun;Kong, Cui;Li, Xuan;Sun, Xian-Yang;Xie, Wen-Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.284-290
    • /
    • 2019
  • Ternary MoS2/graphene (G)-TiO2 photocatalysts were prepared by a simple hydrothermal method. The morphology, phase structure, band gap, and catalytic properties of the prepared samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-vis spectrophotometry, and Brunauer-Emmett-Teller surface area measurement. The H2 production efficiency of the prepared catalysts was tested in methanol-water mixture under visible light. MoS2/G-TiO2 exhibited the highest activity for photocatalytic H2 production. For 5 wt.% and 1 wt.% MoS2 and graphene (5MT-1G), the production rate of H2 was as high as 1989 µmol-1h-1. The catalyst 5MT-1G showed H2 production activity that was ~ 11.3, 5.6, and 4.1 times higher than those of pure TiO2, 1GT, and 5MT, respectively. The unique structure and morphology of the MoS2/G-TiO2 photocatalyst contributed to its improved hydrogen production efficiency under visible light.

A Mini-Review on Non-Aqueous Lithium-Oxygen Batteries - Electrochemistry and Cathode Materials

  • Riaz, Ahmer;Jung, Kyu-Nam;Lee, Jong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-58
    • /
    • 2015
  • There is a great deal of current interest in the development of rechargeable batteries with high energy storage capability due to an increasing demand for electric vehicles (EVs) with driving ranges comparable to those of gasoline-powered vehicles. Among various types of batteries under development, a Li-O2 battery delivers the highest theoretical energy density; thus, it is considered a promising energy storage technology for EV applications. Despite the fact that extensive research efforts have been made in the field of Li-O2 batteries in recent years, there are still many technical challenges to be addressed, such as low round-trip efficiency, poor reversibility, and poor power capability. In this article, we provide a short review on the fundamental electrochemistry of Li-O2 batteries with non-aqueous electrolytes and on electrode materials that have been employed in cathodes (oxygen electrodes). The major aim of this mini-review is to highlight the physical and electrochemical origins of scientific challenges facing Li-O2 battery technology and to overview the strategies proposed to overcome them.

Synthesis and Characterization of ZnxMN1−xFe2O4 Nanoparticles by a Reverse Micelle Process

  • Kim, Sun-Woog;Kim, Hyeon-Cheol;Kim, Jun-Seop;Kim, Hyun-Ju;Bae, Dong-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.320-323
    • /
    • 2008
  • The preparation of $Zn_xMn_{1-x}Fe_2O_4$ nanoparticles in an Igepal CO-520-cyclohexane water reverse micelle solution has been studied. The transmission electron microscopy and X-ray diffraction pattern analyses revealed the resulting particles to be $Zn_xMn_{1-x}Fe_2O_4$. The average size and distribution of the synthesized particles calcined at $500^{\circ}C$ for 5 h were in the range of 10 to 20 nm and broad, respectively. The phase of the synthesized particles was crystalline, the magnetic behavior of the synthesized particles was ferromagnetic. The effect of the synthesis parameters, such as the molar ratio of water to surfactant and calcination temperature, is discussed.

A Study on the High Frequency Properties of Mn-Zn ferrite with Re2O3(R=Dy, Gd, Ho) Addition (Re2O3(R=Dy, Gd, Ho)첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구)

  • 최우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.538-548
    • /
    • 2003
  • We studied effects by Re$_2$O$_3$(R=Dy, Gd, Ho) addition on the properties of Mn-Zn ferrite. The doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ceramics. With increasing the rare earth oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. In case of excessive addition of additive beyond some level, initial permeability properties of ferrite have gone down in spite of anomalous grain. With increasing the content of additive, both the real and imaginary component of complex permeability and the magnetic loss (tan$\delta$) increased. Because the increased rate of real component had higher than imaginary component, magnetic loss increased none the less for increasing the real component related with magnetic permeability. But, the magnetic loss of ferrite doped with the rare earth oxides was lower than that of Mn-Zn ferrite at any rate. The small amount of present rare earth oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary. It was seem to be due to the formation of mutual reaction such as between iron ions and rare earth element ions.

Antiferroelectric and antiferrodistortive phase transitions in Ruddlesden-Popper Pb2TiO4 from first-principles

  • Xu, Tao;Shimada, Takahiro;Wang, Jie;Kitamura, Takayuki
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2017
  • This work employed density functional theory to investigate the structural and ferroelectric properties of the Ruddlesden-Popper (RP) phase of lead titanate, $Pb_2TiO_4$, as well as its phase transitions with epitaxial strain. A wealth of novel structural instabilities, which are absent in the host $PbTiO_3$ material, were identified in the RP phase through phonon soft-mode analysis. Our calculations showed that the ground state of $Pb_2TiO_4$ is antiferroelectric, distinct from the dominant ferroelectric phase in the corresponding host material. In addition, applied epitaxial strain was found to play a key role in the interactions among the instabilities. The induction of a sequence of antiferroelectric and antiferrodistortive (AFD) phase transitions by epitaxial strain was demonstrated, in which the ferroic instability and AFD distortion were cooperative rather than competitive, as is the case in the host $PbTiO_3$. The RP phase in conjunction with strain engineering thus represents a new approach to creating ferroic orders and modifying the interplay among structural instabilities in the same constituent materials, enabling us to tailor the functionality of perovskite oxides for novel device applications.

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite

  • Lee, BooRak;Jeong, GeolChae;Park, GeunO;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.343-348
    • /
    • 2018
  • Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.