• Title/Summary/Keyword: Artificial-Intelligent Diagnosis Method

Search Result 21, Processing Time 0.029 seconds

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

Investigation of Simulation and Measuring Algorithm of Partial Discharge for Diagnosis of Electric Machinery Deterioration (전력기기 열화 진단을 위한 부분방전 모의 및 측정 알고리즘 개발연구)

  • Jang, Hyeong-Taek;Kwack, Sun-Geun;Shin, Pan-Seok;Kim, Chang-Eob;Chung, Gyo-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.30-38
    • /
    • 2011
  • This paper proposes a new intelligent diagnosis equipment for the partial discharge, which keeps deteriorating the insulating materials inside electric machineries, ultimately leading to electrical breakdown. In order to simulate experimentally the partial discharge inside the electric machinery, the tip-to-plate, the sphere-to-plate, the sphere-to-sphere and the plate-to-plate electrodes are used respectively, of which the gaps are 1[mm], 3[mm] or 5[mm] and the applied voltages are 3[kV], 5[kV] or 7[kV]. Ceramic coupler sensor and FIR digital filter are used to measure the partial discharge and the artificial neural network is used for the deterioration diagnosis of the electric machinery. The microprocessor of PD diagnosis equipment is DSP (TMS320C6713) with FPGA (Cyclone II). The results of the real-time and on-line experiments performed with the developed equipment are also explained.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.

A Study on the Design Method of the Integrative Intelligent Model for Educational System (지능형 교육 시스템의 통합 모형 탐색 연구)

  • Heo, Gyun;Kang, Seung-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.462-472
    • /
    • 2008
  • Education is a field that has tried to make use of the advantages of computers since they were introduced to the world. Intelligent Tutoring System and multimedia have become methods of teaching students of Computer Science, Education, Psychology, and Cognitive Science. Until now, they have been designed and produced only on the basis of a very specific domain and format. However, in the education field, most learners ask for integrated service that is practical, realizable, and sensitive to technological change. Therefore, in this study, we would like to present the technological and formal integration model as an ITS model which acknowledges changes in the fields of technology and education. As a technological integration model, the integration model of traditional Symbolic Artificial Intelligence and Artificial Neural Networks was presented. As a formal integration model, three integration models were presented according to (a) the process of learning diagnosis (b) learners' action behaviors (c) intelligence service respectively.

A Study on fault diagnosis of DC transmission line using FPGA (FPGA를 활용한 DC계통 고장진단에 관한 연구)

  • Tae-Hun Kim;Jun-Soo Che;Seung-Yun Lee;Byeong-Hyeon An;Jae-Deok Park;Tae-Sik Park
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.601-609
    • /
    • 2023
  • In this paper, we propose an artificial intelligence-based high-speed fault diagnosis method using an FPGA in the event of a ground fault in a DC system. When applying artificial intelligence algorithms to fault diagnosis, a substantial amount of computation and real-time data processing are required. By employing an FPGA with AI-based high-speed fault diagnosis, the DC breaker can operate more rapidly, thereby reducing the breaking capacity of the DC breaker. therefore, in this paper, an intelligent high-speed diagnosis algorithm was implemented by collecting fault data through fault simulation of a DC system using Matlab/Simulink. Subsequently, the proposed intelligent high-speed fault diagnosis algorithm was applied to the FPGA, and performance verification was conducted.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Detection of Lung Nodule on Temporal Subtraction Images Based on Artificial Neural Network

  • Tokisa, Takumi;Miyake, Noriaki;Maeda, Shinya;Kim, Hyoung-Seop;Tan, Joo Kooi;Ishikawa, Seiji;Murakami, Seiichi;Aoki, Takatoshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.137-142
    • /
    • 2012
  • The temporal subtraction technique as one of computer aided diagnosis has been introduced in medical fields to enhance the interval changes such as formation of new lesions and changes in existing abnormalities on deference image. With the temporal subtraction technique radiologists can easily detect lung nodules on visual screening. Until now, two-dimensional temporal subtraction imaging technique has been introduced for the clinical test. We have developed new temporal subtraction method to remove the subtraction artifacts which is caused by mis-registration on temporal subtraction images of lungs on MDCT images. In this paper, we propose a new computer aided diagnosis scheme for automatic enhancing the lung nodules from the temporal subtraction of thoracic MDCT images. At first, the candidates regions included nodules are detected by the multiple threshold technique in terms of the pixel value on the temporal subtraction images. Then, a rule-base method and artificial neural networks is utilized to remove the false positives of nodule candidates which is obtained temporal subtraction images. We have applied our detection of lung nodules to 30 thoracic MDCT image sets including lung nodules. With the detection method, satisfactory experimental results are obtained. Some experimental results are shown with discussion.

The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system (인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템)

  • Lee, Gil-Jae;Kim, Chang-Joo;Ahn, Byung-Ryul;Kim, Moon-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.45-52
    • /
    • 2008
  • As the recent development of the IT services, there is a urgent need of effective diagnosis system to present appropriate solution for the complicated problems of breakdown control, a cause analysis of breakdown and others. So we propose an intelligent diagnosis system that integrates the case-based reasoning and the artificial neural network to improve the system performance and to achieve optimal diagnosis. The case-based reasoning is a reasoning method that resolves the problems presented in current time through the past cases (experience). And it enables to make efficient reasoning by means of less complicated knowledge acquisition process, especially in the domain where it is difficult to extract formal rules. However, reasoning by using the case-based reasoning alone in diagnosis problem domain causes a problem of suggesting multiple causes on a given symptom. Since the suggested multiple causes of given symptom has the same weight, the unnecessary causes are also examined as well. In order to resolve such problems, the back-propagation learning algorithm of the artificial neural network is used to train the pairs of the causes and associated symptoms and find out the cause with the highest weight for occurrence to make more clarified and reliable diagnosis.

Two-Step Filtering Datamining Method Integrating Case-Based Reasoning and Rule Induction

  • Park, Yoon-Joo;Chol, En-Mi;Park, Soo-Hyun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.329-337
    • /
    • 2007
  • Case-based reasoning (CBR) methods are applied to various target problems on the supposition that previous cases are sufficiently similar to current target problems, and the results of previous similar cases support the same result consistently. However, these assumptions are not applicable for some target cases. There are some target cases that have no sufficiently similar cases, or if they have, the results of these previous cases are inconsistent. That is, the appropriateness of CBR is different for each target case, even though they are problems in the same domain. Thus, applying CBR to whole datasets in a domain is not reasonable. This paper presents a new hybrid datamining technique called two-step filtering CBR and Rule Induction (TSFCR), which dynamically selects either CBR or RI for each target case, taking into consideration similarities and consistencies of previous cases. We apply this method to three medical diagnosis datasets and one credit analysis dataset in order to demonstrate that TSFCR outperforms the genuine CBR and RI.

  • PDF