• Title/Summary/Keyword: Artificial valve

Search Result 126, Processing Time 0.032 seconds

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • ;K.B
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.87-96
    • /
    • 1992
  • In thIns paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is'presented. A trlleaflet polyurethane valve was simulated at the outflow orifice while the Inflow orifice had a trileaflet or a flap valve. The finite analytic numerical method was employed to obtain solutions to the governing equations in the Cartesian coordinates. The closure for turbulence model was achieved by employing the k-$\varepsilon$-E model. The SIMPLER algo rithm was used to solve the problem in primitive variables. The numerical solutions of the slulated model show that regions of relative stasis and trapped vortices were smaller within the ventricular chamber with the flap valve at the Inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller wlth the flap valve than with the trlleaflet valve. These resu1ts also suggest a correlation be- tween high turbulent stresses and the presence of thrombus In the vicinity of the valves in the total artificial hearts. The computed velocity vectors and trubulent stresses were comparable with previ ously reported in vitro measurements in artificial heart chambers. Analysis of the numerical solo talons suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

A Study on the Location of Supporting Members in Monoleaflet Polymer Valve to Minimize Stress and Deformation (응력과 변형을 최소화하기 위한 단엽식 고분자 판막의 지지대 위치에 관한 연구)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Han Geun Jo;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.156-163
    • /
    • 2005
  • A monoleaflet polymer artificial heart valve showed the remarkable improvement in pressure drop compared with other types of artificial valve. So, in this study we designed a monoleaflet polymer artificial valve with two supporting members to minimize the deformation and bending stress of the valve with respect to the variation of the gap between two supporting members using nonlinear contact analysis. The marginal valve thickness was also predicted in accordance with the relationship between the thickness and horizontal displacement in order to prevent the dislocation of the valve tip from the frame wall.

Flow Pattern Analysis of Artificial Valves Using High Speed Camera and Image Processing Technique (고속 사진기와 영상처리 기법을 이용한 인공판막의 흐름 분석.)

  • Lee, Dong-Hyeok;Kim, Hee-Chan;Seo, Soo-Won;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.81-84
    • /
    • 1993
  • Artificial Heart Valve is the one of the most important artificial organ which has been implanted to many patients. The most important problems related to the artificial heart valve prosthesis are thrombosis and hemolysis. Usual method to test against this problem in vivo experiment, which is complex and hard work. Nowadays the request for In vitro Artificial Heart Valve testing system is increasing. Several papers has announced us flow pattern of Artificial Heart Valve is highly correlated with thrombosis and hemolysis. They usually gel flow pattern by LDA, it is also hard work and has narrow measuring region. In this reason we have determined to develop PTV(Particle Tracking Velocimetry). By using High-speed camera and image processing technique, flow pattern could be relatively easily obtained. Parachute and Bileaflet Artificial Heart Valve designed by SNU were testified.

  • PDF

Mechanism for Cavitation Phenomenon in Mechanical Heart Valves

  • Lee Hwan-Sung;Taenaka Yoshiyuki
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1118-1124
    • /
    • 2006
  • Recently, cavitation on the surface of mechanical heart valve has been studied as a cause of fractures occurring in implanted Mechanical Heart Valves (MHVs). It has been conceived that the MHVs mounted in an artificial heart close much faster than in vivo sue, resulting in cavitation bubbles formation. In this study, six different kinds of mono leaflet and bileaflet valves were mounted in the mitral position in an Electro-Hydraulic Total Artificial Heart (EHTAH), and we investigated the mechanisms for MHV cavitation. The valve closing velocity and a high speed video camera were employed to investigate the mechanism for MHV cavitation. The closing velocity of the bileaflet valves was slower than that of the mono leaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the bileaflet valve with slow valve-closing velocity and small valve stop areas is better able to prevent blood cell damage than the monoleaflet valves.

Ebstein`s anomaly ; St. Jude Medical valve replacement using partial artificial annulus formation - A Case Report - (Ebstein 기형에 인공판윤을 이용한 금속형 St. Jude Medical 인공판막 대치술)

  • Lee, Jong-Guk;Jo, Jae-Min
    • Journal of Chest Surgery
    • /
    • v.25 no.8
    • /
    • pp.826-831
    • /
    • 1992
  • Ebstein`s anomaly is characterized by a downward displacement of a malformed tricuspid valve, The ideal surgical management of Ebstein`s anomaly is not yet established. Recently we experience one case of Ebstein`s anomaly, which was treated sussessfully by partial artificial annulus formation, and tricuspid valve replacement with St. Jude Medical valve. We have achieved excellent results with mechanical valve replacement and partial artificial annulus formation using wessex pericardial patch. On follow up for 4 years, the patient is well and in functional class I.

  • PDF

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • Kim, S.H.;Chandran, K.B;Chen, C.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.123-126
    • /
    • 1992
  • In this paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is presented. A trileaflet polyurethane valve was simulated at the outflow orifice while the inflow orifice had a trileaflet or a flap valve. The numerical solutions of the simulated model show that regions of relative stasis and trapped vortices were smaller wi thin the ventricular chamber wi th the flap valve at the inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller with the flap valve than with the trileaflet valve. Analysis of the numerical solutions suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

Development and Animal Tests of Artificial Heart Valves (인공심장판막의 개발 및 동물실)

  • 이재영
    • Journal of Chest Surgery
    • /
    • v.20 no.3
    • /
    • pp.458-472
    • /
    • 1987
  • A heart supplies bloods of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to this act of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of bloods. In an attempt to eliminate the affliction of heart valves, the operation method to repair with artificial heart valves has been developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. The artificial heart valve using pyrolytic carbon has been developed at KAIST, which was proved to be stable in the mechanical performance and durability. Therefore, the in viva performance of this valve was examined through animal tests. The artificial heart valves used in this study are tilting disc type valves, in which the disc were made of graphite coated with pyrolytic carbon and the cages were made of titanium. In viva testings of these valves were performed in 12 dogs, in which right ventriculo-pulmonary arterial [Croup I] or inter-aortic [Croup IV] valved conduit was implanted using polytetrafluoroethylene conduits containing KAIST valve and aortic valve [Group II] or pulmonary valve [Croup III] was replaced by a KAIST valve with a 21mm or 19mm tissue annulus diameter. In group I and II, pre-and post-operative transvalvular pressure gradient was measured and compared with other prosthetic valves. During post operative period laboratory examination was performed including hemoglobin, hematocrit, red cell count, white cell, lactic acid dehydrogenase and platelet. The eight surviving dogs were sacrificed and autopsy was performed at 2, 6, and 8 weeks. KAIST valve has low transvalvular gradient and relatively high orifice area. Average ventriculo-aortic peak systolic transvalvular gradient was 14 mmHg in 21 mm valve and 19 mmHg in 19 mm valve. The valve has slight intravascular hemolysis effect. Thrombogenic effect of low polishing quality and eddy currents around small orifice is high. The valve has vulnerability of disc movement. These animal tests suggest that the improvement of the heart valve design, surface polishing state and prescription methods.

  • PDF

The Second Animal Tests of Artificial Heart Valves (인공심장판막의 개발과 동물실험 -인공심장판막의 2차 동물실험-)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.23 no.4
    • /
    • pp.617-621
    • /
    • 1990
  • A heart supplies blood of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to accomplish these enormous work of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of blood. In an attempt to eliminate the affliction of heart valves, the operative method to replace with artificial heart valves has developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. New artificial heart valves have been developed in Korea Advanced Institute of Science and Technology since early 1980`s. The first developed valve was designed with a free-floating pyrolytic carbon disk that is suspended in a titanium cage. The design of the valve was tested in vitro, and in animals in 1987. The results from this study was that the eccentrically placed struts creates a major and minor orifice when the disc opens and stagnation of flow in the area of the minor orifice has led to valve thrombosis. In this work, the design of the valve was changed from a single - leaflet valve to double - leaflet one in order to resolve the problems observed in the first - year tests. Morphological and hemodynamic studies were made for the newly designed valves through the in vitro and in vivo tests. The design and partial materials of the artificial heart valve was improved comparing with first - year`s model. The disc in the valve was modified from single - leaflet to bi - leaflet, and the material of the cage was changed from titanium metal to silicon - alloyed pyrolytic carbon. A test was made for the valve in order to examine its mechanical performance and stability. Morphological and hemodynamic studies were made for the valve that had been implanted in tricuspid position of mongrel dogs. All the test animals were observed just before the deaths. A new artificial heart valve was designed and fabricated in order to resolve the problems observed in the old model. The new valve was verified to have good stability and high resistance to wear through the performance tests. The hemodynamic properties of the valve after implantation were also estimated to be good in animal tests. Therefore, the results suggest that the newly designed valve in this work has a good quality in view of the biocompatibility. However, valve thrombosis on valve leaflets and annulus were found. This morphological findings were in accordance with results of surface polishing status studies, indicating that a technique of fine polishing of the surface is necessary to develop a valve with higher quality and performance.

  • PDF

A study on the performance of the polymer valve in Total Artificial Heart (인공심장용 폴리머 밸브의 역류 특성 분석)

  • Lee, J.J.;Choi, J.H.;Lee, J.H.;Yi, S.W.;Om, K.S.;Ahn, J.M.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.241-242
    • /
    • 1998
  • For the aritificial heart valve, two types of valves-polymer and mechanical valve- are generally used. The polymer valve is used as a new low-cost artificial valve. Among the several properties of the artificial valve, the low-regurgitation property is important because it can provide better cardiac output characteristic. So in this study we analyzed and compared the regurgitation property of the mechanical valve which is generally used nowdays and the polymer valve which was made in our group. As results, the polymer valve showed the better regurgitation property compared to the mechanical valve approximately by 3 times, and increased the cardiac output by 10%.

  • PDF

Nonlinear Analysis of the Monoleaflet Polymer Valve according to Shape of Supporting Members (지지대 형상에 따른 단엽식 고분자 판막의 비선형 해석)

  • 한근조;안성찬;심재준;김성윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.120-124
    • /
    • 2003
  • Monoleaflet polymer artificial heart valve was known to show remarkable improvement in antithrombosis and pressure drop compared with other type of artificial valve. In this investigation of monoleaflet heart valve the vertical and horizontal deflection pattern of polymer heart valve with three types of supporting members, straight member and two curved members were analysed using the large deformation nonlinear finite element method.