• Title/Summary/Keyword: Artificial potential field

Search Result 151, Processing Time 0.024 seconds

Motion Planning for Mobile Robots Using a Spline Surface

  • Kato, Kiyotaka;Tanaka, Jyunichi;Tokunaga, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1054-1059
    • /
    • 2005
  • The artificial potential method uses a potential field to guide a robot from a start to a goal configuration respectively. The potential field consists of attractive potential used to pull a robot toward a goal and repulsive potential to keep it away from obstacles. However, there are two problems concerning local minimum and computational cost to be resolved in conventional artificial potential methods. This study proposes a method utilizing a spline surface that interpolates arbitrary boundaries and a domain reduction method that reduces the unnecessary area. The proposed spline surface interpolates arbitrary shaped boundaries and is used as an artificial potential to guide a robot for global motion planning of a mobile robot. A reduced domain process reduces the unnecessary domain. We apply a distance-weighted function as such a function, which blends distances from each boundary with a reduction in computational time compared with other analytical methods. As a result, this paper shows that an arbitrary boundary spline surface provides global planning and a domain reduction method reduces local minimum with quick operation.

  • PDF

A new Approach to Moving Obstacle Avoidance Problem of a Mobile Robot

  • 고낙용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.9-21
    • /
    • 1998
  • This paper a new solution approach to moving obstacle avoidance problem of a mobile robot. A new concept avoidability measure (AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function (VDF), is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF ,an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Obstacle Avoidance for AUV using CAPM (CAPM을 이용한 AUV의 장애물 회피)

  • 양승윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.17-29
    • /
    • 2001
  • In this paper, we designed the hybrid path generation method which is named CAPM(Continuous path generation method based on artificial Potential field) that is able to be used in the obstacles environment. This CAPM was designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method(CPGM) and the artificial potential field method(APFM). Here, the CAPM generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the APFM generates the path with the artificial potential field in the obstacles environment. But, It has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the CAPM was designed for autonomous underwater vehicle(AUV) obstacle avoidance. As the result of simulation, it was confirmed that the CAPM can be applied to a safe path generation for AUV.

  • PDF

A New Method for Local Obstacle Avoidance of a Mobile Robot (이동 로봇의 지역 장애물 회피를 위한 새로운 방법)

  • 김성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.88-93
    • /
    • 1998
  • This paper presents a new solution approach to moving obstacle avoidance problem for a mobile robot. A new concept avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terns of the VDF, an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived form the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Optimal Design of Preform in Hot forging (열간 단조에서의 최적 예비형상 설계)

  • Lee, S.R.;Lee, Y.G.;Park, C.H.;Yang, D.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.780-785
    • /
    • 2000
  • The equi-potential lines designed in the electric field are introduced to find the preform shape in axisymmetric hot forging. The equi-potential lines generated between two conductors of different voltages show similar trends of the minimum work paths between the undeformed shape and the deformed shape. Base on this similarity, the equi-potential lines obtained by arrangement of the initial and final shapes are utilized fur the design of preform, and then the artificial neural network is used to find the range of initial volume and potential value of the electric field.

  • PDF

Moving obstacle avoidance of a robot using avoidability measure (충돌 회피 가능도를 이용한 로봇의 이동 장애물 회피)

  • Ko, Nak-Yong;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1997
  • This paper presents a new solution approach to moving obstacle avoidance problem of a robot. A new concept, avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of three state variables: the distance from the obstacle to the robot, outward speed of the obstacle relative to the robot, and outward speed of the robot relative to the obstacle. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF, an artificial potential is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid a moving obstacle in real time. Since the algorithm considers the mobility of the obstacle and robot as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Real time navigaion strategy of a robile robot using artificial potential field

  • Chung, Yong-Hyun;Jin, Sang-Ho;Park, Jung-Il;Lee, Suck-Gyu;Lee, Dal-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.446-448
    • /
    • 1994
  • This paper proposes some dynamic navigation strategy for a mobile robot among multiple moving obstacles. The control force of the robot which consists of repulsive and attractive force is based on the artificial potential field. The artificial potential fields is derived with position or(and) velocities of the objects. The simulation results shows the properties of the proposed strategies.

  • PDF

Potential role of artificial intelligence in craniofacial surgery

  • Ryu, Jeong Yeop;Chung, Ho Yun;Choi, Kang Young
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.5
    • /
    • pp.223-231
    • /
    • 2021
  • The field of artificial intelligence (AI) is rapidly advancing, and AI models are increasingly applied in the medical field, especially in medical imaging, pathology, natural language processing, and biosignal analysis. On the basis of these advances, telemedicine, which allows people to receive medical services outside of hospitals or clinics, is also developing in many countries. The mechanisms of deep learning used in medical AI include convolutional neural networks, residual neural networks, and generative adversarial networks. Herein, we investigate the possibility of using these AI methods in the field of craniofacial surgery, with potential applications including craniofacial trauma, congenital anomalies, and cosmetic surgery.

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF