Browse > Article
http://dx.doi.org/10.7181/acfs.2021.00507

Potential role of artificial intelligence in craniofacial surgery  

Ryu, Jeong Yeop (Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University)
Chung, Ho Yun (Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University)
Choi, Kang Young (Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University)
Publication Information
Archives of Craniofacial Surgery / v.22, no.5, 2021 , pp. 223-231 More about this Journal
Abstract
The field of artificial intelligence (AI) is rapidly advancing, and AI models are increasingly applied in the medical field, especially in medical imaging, pathology, natural language processing, and biosignal analysis. On the basis of these advances, telemedicine, which allows people to receive medical services outside of hospitals or clinics, is also developing in many countries. The mechanisms of deep learning used in medical AI include convolutional neural networks, residual neural networks, and generative adversarial networks. Herein, we investigate the possibility of using these AI methods in the field of craniofacial surgery, with potential applications including craniofacial trauma, congenital anomalies, and cosmetic surgery.
Keywords
Artificial intelligence; Neural networks, computer; Surgery, plastic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Salgarello M, Pagliara D, Rossi M, Visconti G, Barone-Adesi L. Postoperative monitoring of free DIEP flap in breast reconstruction with near-infrared spectroscopy: variables affecting the regional oxygen saturation. J Reconstr Microsurg 2018;34:383-8.   DOI
2 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Weinberger KQ, editors. Advances in neural information processing systems 27. Red Hook: Curran; 2014. p. 2672-80.
3 Basha CMAKZ, Padmaja M, Balaji GN. Computer aided fracture detection system. J Med Imaging Health Inform 2018;8:526-31.   DOI
4 Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 2018;89:468-73.   DOI
5 Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65:386-408.   DOI
6 LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998;86:2278-324.   DOI
7 Lee YJ. Orbital floor fracture repair with implants: a retrospective study. Arch Craniofac Surg 2021;22:177-82.   DOI
8 Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 2018;115:11591-6.   DOI
9 Yao J, Burns JE, Munoz H, Summers RM. Cortical shell unwrapping for vertebral body abnormality detection on computed tomography. Comput Med Imaging Graph 2014;38:628-38.   DOI
10 Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 2020;3:118.   DOI
11 McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol 1990;52:99-115.   DOI
12 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313:504-7.   DOI
13 Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst 2018;42:226.   DOI
14 Lee CL, Yang HJ, Hwang YJ. Comparison of the outcomes of nasal bone reduction using serial imaging. Arch Craniofac Surg 2021;22:193-8.   DOI
15 Lee YW, Bae YC, Park SM, Nam SB, Seo HJ, Kim GW. Outcomes of a superiorly-based pharyngeal flap for the correction of velopharyngeal dysfunction. Arch Craniofac Surg 2020;21:22-6.   DOI
16 Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.   DOI
17 Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol 2019;20:1645-54.   DOI
18 Ryu JY, Eo PS, Lee JS, Lee JW, Lee SJ, Lee JM, et al. Surgical approach for venous malformation in the head and neck. Arch Craniofac Surg 2019;20:304-9.   DOI
19 Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. Paper presented at: 2017 IEEE International Conference on Computer Vision; 2017 Oct 22-29; Venice, Italy.
20 Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. In: Gooya A, Frangi AF, Tsaftaris SA, Prince JL, editors. Simulation and Synthesis in Medical Imaging. Cham: Springer; 2017. p. 14-23.
21 Chang HH, Moura JMF. Biomedical signal processing. In: Kutz M, editor, Biomedical engineering and design handbook. Vol. 1. 2nd ed. New York: McGraw-Hill; 2010. p. 559-79.
22 Ironside N, Chen CJ, Mutasa S, Sim JL, Ding D, Marfatiah S, et al. Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke 2020;51:815-23.   DOI
23 Suh JM, Chung CH, Chang YJ. Head and neck reconstruction using free flaps: a 30-year medical record review. Arch Craniofac Surg 2021;22:38-44.   DOI
24 Yamashita R, Nishio M, Do R, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018;9:611-29.   DOI
25 Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg 2019;30:91-5.   DOI
26 Zhao X, Chen K, Wu G, Zhang G, Zhou X, Lv C, et al. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Eur Radiol 2021;31:5012-20.   DOI
27 Kwon JM, Jeon KH, Kim HM, Kim MJ, Lim S, Kim KH, et al. Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation 2019;139:84-91.   DOI
28 Al-Helo S, Alomari RS, Ghosh S, Chaudhary V, Dhillon G, AlZoubi MB, et al. Compression fracture diagnosis in lumbar: a clinical CAD system. Int J Comput Assist Radiol Surg 2013;8:461-9.   DOI
29 Gale W, Oakden-Rayner L, Carneiro G, Bradley AP, Palmer LJ. Detecting hip fractures with radiologist-level performance using deep neural networks. arXiv 1711.06504 [Preprint]. 2017 [cited 2021 Sep 28]. https://arxiv.org/abs/1711.06504.
30 Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 2018;73:439-45.   DOI
31 Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-210.   DOI
32 Akita S, Mitsukawa N, Tokumoto H, Kubota Y, Kuriyama M, Sasahara Y, et al. Regional oxygen saturation index: a novel criterion for free flap assessment using tissue oximetry. Plast Reonstr Surg 2016;138:510e-518e.   DOI
33 Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 2019;48:239-44.   DOI
34 Bayram F, Cakiroglu M. DIFFRACT: DIaphyseal Femur FRActure Classifier SysTem. Biocybern Biomed Eng 2016;36:157-71.   DOI
35 Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.   DOI
36 Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88:581-6.   DOI
37 Dhar R, Falcone GJ, Chen Y, Hamzehloo A, Kirsch EP, Noche RB, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke 2020;51:648-51.   DOI
38 Sharrock MF, Mould WA, Ali H, Hildreth M, Awad IA, Hanley DF, et al. 3D deep neural network segmentation of intracerebral hemorrhage: development and validation for clinical trials. Neuroinformatics 2021;19:403-15.   DOI
39 Mundt JC, Vogel AP, Feltner DE, Lenderking WR. Vocal acoustic biomarkers of depression severity and treatment response. Biol Psychiatry 2012;72:580-7.   DOI
40 Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019;290:218-28.   DOI
41 Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and validation of a deep-earning model to screen for hyperkalemia from the electro-cardiogram. JAMA Cardiol 2019;4:428-36.   DOI
42 Marchesi A, Garieri P, Amendola F, Marcelli S, Vaienti L. Intraoperative near-infrared spectroscopy for pedicled perforator flaps: a possible tool for the early detection of vascular issues. Arch Plast Surg 2021;48:457-61.   DOI
43 Benba A, Jilbab A, Hammouch A. Discriminating between patients with Parkinson's and neurological diseases using cepstral analysis. IEEE Trans Neural Syst Rehabil Eng 2016;24:1100-8.   DOI
44 Nam SM. Surgical treatment of velopharyngeal insufficiency. Arch Craniofac Surg 2018;19:163-7.   DOI
45 Mirza M, Osindero S. Conditional generative adversarial nets. arXiv 1411.1784 [Preprint]. 2014 [cited 2021 Sep 28]. https://arxiv.org/abs/1411.1784.
46 Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. IEEE Trans Pattern Anal Mach Intell 2020 Feb 2 [Epub]. https://doi.org/10.1109/TPAMI.2020.2970919.   DOI
47 Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation. arXiv 1710.10196 [Preprint]. 2018 [cited 2021 Sep 28]. https://arxiv.org/abs/1710.10196.
48 Hong JY, Han K, Jung JH, Kim JS. Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea. JAMA Netw Open 2019;2:e1910584.   DOI