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INTRODUCTION
Many new technologies, such as artificial intelligence (AI), 
three-dimensional printing, virtual and augmented reality, and 
robotic surgery, are being introduced to the medical field. Large 
amounts of data are available in the specialty of craniofacial 
surgery, including photographs, computed tomography (CT) 
images, and audio files. These data provide a basis for applying 
AI technology. To date, the most prominent application of AI 
in medicine is image recognition technology, as exemplified by 
AI models used in radiology and pathology. The applications of 
AI include image quality improvement and the identification, 
measurement, and classification of lesions. The performance of 
speech recognition and natural language processing has also 

substantially improved.
The US Food and Drug Administration (FDA) has approved 

several medical AI applications in fields including cardiology, 
endocrinology, radiology, neurology, internal medicine, oph-
thalmology, emergency medicine, and oncology; however, no 
AI models developed for plastic and reconstructive surgery 
have yet received FDA approval [1]. Nonetheless, medical AI 
holds considerable promise across the full range of medical 
specialties, including plastic surgery. In this review, we would 
like to investigate the potential of applying medical AI to plastic 
surgery, especially in the subspecialty of craniofacial surgery.

DEFINITION OF AI
To understand the definition of AI, it is essential to be familiar 
with the conceptual relationships among AI, machine learning, 
and deep learning (Fig. 1). AI is a term with a very broad mean-
ing, extending beyond the field of engineering to include politi-
cal, economic, and social considerations. Instead, machine 
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learning refers to the implementation of AI limited to an engi-
neering context. Machine learning encompasses various meth-
ods, including those based on artificial neural networks 
(ANNs). An ANN simulates human neurons and neural net-
works that involve hierarchical connections. The ANN concept 
was first proposed by McCulloch and Pitts [2] and made con-
crete by Rosenblatt [3], who suggested a structure, called a per-
ceptron, that mimics the signal transduction process of human 
nerve cells. Hinton and Salakhutdinov [4] coined the term 
“deep neural network” (DNN) for a multilayer perceptron com-
posed of several hidden layers and described the learning 
method of a DNN as “deep learning.” Deep learning, which re-
fers to an ANN consisting of several deep layers, incorporates 
most characteristics of machine learning (Fig. 2).

Medical applications based on deep learning include image 
recognition, classification, detection, and segmentation; face 
recognition; visual tracking; video classification; speech recog-
nition; and natural language processing [5].

CONVOLUTIONAL NEURAL 
NETWORKS AND CRANIOFACIAL 
SURGERY
With advances in deep learning technology based on DNNs 
and the introduction of the convolutional neural network 
(CNN) technology, a paradigm shift has occurred in the ma-
chine learning field dealing with image data. Before the CNN 
concept was presented, LeCun et al. [6] tried to classify input 
features by introducing the convolution concept into the multi-
layer perceptron structure and presented a methodology to use 
this concept for the handwritten number recognition problem. 
A CNN is an algorithm used for image pattern recognition that 
makes it possible to carry out the entire process from feature 
extraction to classification using a single model (Fig. 3). CNNs 
can be applied as an essential structure for detection and seg-
mentation problems beyond simple image classification; hence, 
they have become a vitally important technology in deep learn-

Fig. 1. Relationship of artificial intelligence, machine learning, and deep learning.

Fig. 2. Deep learning and a neural network. Deep learning neural networks are similar to biological neural networks.
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ing studies dealing with medical images [7]. In imaging re-
search, classification refers to determining the presence or ab-
sence of a specific object in an image, while detection involves 
both checking for the presence or absence of a specific object in 
an image and determining the object’s location. Segmentation 
refers to displaying the position of a specific object in an image 
in pixel units. Research in this domain aims to construct a CNN 
that derives an output image from an original image, showing a 
mask of the object of interest in the original input image.

Many potential applications in the field of craniofacial trauma 
are based on CNNs. Most craniofacial surgeons diagnose cra-
niofacial trauma based on the patient’s history, a physical exam-
ination, and imaging findings, such as CT and radiography 
[8,9]. CT scans are the most important diagnostic tool for diag-
nosing craniofacial trauma. AI can automatically diagnose cra-
niofacial bone fractures using CNN-based classification or de-
tection mechanisms. The effectiveness of CNN-based imaging 
diagnostics for bone fractures in the extremity, spine, and hip 
has already been reported in several studies [10-19]. In these 
studies, the pretrained CNN models used were ResNet-152, 
DenseNet, Inception v3, U-Net, VGG_16, VGG_19, Network-
in-Network, VGG CNN’s Network, and BVLC Reference 
CaffeNet. The mean accuracy was 90.08% (range, 83%–98%), 
and the mean area under the curve was 0.98 (range, 0.95–1.00). 
Classification, detection, and segmentation using CNN models 
can be used for patients with facial bone fractures based on X-
ray or facial CT images.

Interestingly, several reports have compared the medical im-
age reading performance of AI with that of doctors. In fundus 
photographs from adults with diabetes, an algorithm based on 
deep machine learning showed high sensitivity and specificity 
for detecting referrable diabetic retinopathy. The performance 
of this algorithm was on par with the diagnostic accuracy of 
ophthalmologists [20]. For classifying important dermatologi-
cal diseases in general skin photos or dermoscopy photos, an 

AI algorithm showed a similar level of accuracy to that of expe-
rienced dermatologists [21]. The performance of an AI algo-
rithm in finding malignant pulmonary nodules in chest radiog-
raphy images exceeded the diagnostic accuracy of experienced 
chest radiologists [22]. In addition, several studies have report-
ed that the image reading performance of AI algorithms was 
superior or similar to that of doctors [23,24]. Based on these 
studies, if CT or X-ray images of patients with facial bone frac-
tures are trained well enough, it may be possible to implement 
an AI algorithm with similar image reading performance to 
that of craniofacial surgeons.

With regard to orthognathic surgery, AI algorithms can be 
applied to maxillofacial imagery, treatment planning, custom 
orthodontics, surgical appliances, and treatment follow-up. 
Software using AI to perform automatic tracing through deep 
learning of cephalograms already exists [25]. At present, at-
tempts are being made to use machine learning to perform sur-
gical planning and automatically produce CAM/CAD surgical 
appliances.

CNNs can also be applied to vascular diseases in the craniofa-
cial field. Several studies have reported that AI algorithms 
showed excellent performance in automatic segmentation of ar-
eas affected by intracranial hemorrhage using brain CT images 
and in measurements of hemorrhage volume [26-29]. The pos-
sibility of accurate automatic segmentation of the extent and 
volume of vascular tumors or malformations can be considered, 
even for vascular anomalies in the head and neck area [30].

RECURRENT NEURAL NETWORKS 
AND SPEECH AND NATURAL 
LANGUAGE PROCESSING: CLEFT 
PALATE AND VELOPHARYNGEAL 
INSUFFICIENCY
One might imagine an AI algorithm listening to speech input 

Fig. 3. Basic structure of convolutional neural networks (CNNs). A CNN consists of three stages: feature extraction, feature reduction, and the 
final classification.
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from a smartphone and delivering a quantitative estimate of 
improvements in articulation. With recent advances in AI for 
voice recognition, this fantasy is becoming a reality. Language 
input constitutes representative “time series” data. In this data 
structure, a significant amount of data is not acquired at a single 
moment, as is the case for medical images; instead, data are 
continuously acquired in a sequence over time. Therefore, the 
data acquired according to a time sequence possess the charac-
teristic of having an order, which is why the term “time series” 
data is used. It is difficult to reflect the time series characteris-
tics of data in training with the aforementioned machine learn-
ing algorithms or ANN structures. Therefore, a machine learn-
ing algorithm that can effectively learn time series data has 
been proposed. The recurrent neural network (RNN) structure 
has been proposed as a representative algorithm for this pur-
pose, and various modifications have been developed and are 
currently widely applied in both medical and nonmedical 
fields. The general process of a DNN is that when one datum is 
input at a time, the value of that datum is transmitted only in 
the direction of the output layer through an operation in each 
layer. Operations on nodes in each layer are performed using 
only the values received from the previous layer. Contrary to 
this, in an RNN, one datum is not input only once; instead, val-
ues in units of time are sequentially input. To express the corre-
lation between the values input at each point in time, the output 
value of the node is transmitted as an input to the node of the 
next layer. At the same time, it is copied and returned to the in-
put of its own node at the next point in time (Fig. 4). The recur-
rent edge—defined as the path through which data values that 
are sequentially entered from nodes in the hidden layer re-
turn—is the most specific feature of RNNs.

Mundt et al. [31] analyzed the voices of patients with depres-
sion using a statistical regression model. The results suggested 
the possibility that voice could serve as a biomarker indicating 
the degree of response to treatment. Benba et al. [32] reported 
the possibility of voice-based diagnosis based on an analysis of 

the voice characteristics of patients with Parkinson’s disease 
through a machine learning algorithm. For children with cleft 
palate who have undergone palatoplasty, an algorithm could be 
developed using an RNN that would use spectral analysis to ex-
tract characteristic voice features from a picture pronunciation 
test or a sentence pronunciation test and extracting characteris-
tic voice features. Cleft palate and velopharyngeal insufficiency 
are also closely related to speech [33,34]. Although currently 
not valid for children with cleft palate or velopharyngeal insuf-
ficiency, South Korea has a platform that uses AI algorithms to 
diagnose and conduct rehabilitation of speech disorders 
(https://www.talkytalky.kr/). This platform is currently only 
available in the Korean language. A different AI algorithm 
would be needed to expand the platform to include other lan-
guages (e.g., English, Japanese, Chinese, or Spanish).

GENERATIVE ADVERSARIAL 
NETWORKS AND CRANIOFACIAL 
SURGERY
Machine learning, which implements AI in software, refers to 
an algorithm in which a computer learns data, finds patterns on 
its own, and learns to perform appropriate tasks. Machine 
learning is classified as supervised, unsupervised, and rein-
forcement learning. The aforementioned CNNs and RNNs are 
supervised learning algorithms. A generative adversarial net-
work (GAN) is a representative example of an unsupervised 
learning algorithm. The GAN is a regression model published 
by Ian Goodfellow that consists of a model responsible for clas-
sification (discriminator) and regression generation (generator) 
[35]. In these models, the generator and discriminator compete 
against each other to improve each other’s performance. This is 
often compared to a confrontation between police and counter-
feiters. The banknote counterfeiter (generator) tries as hard as 
possible to deceive the police (discriminator). Meanwhile, the 
police try to classify counterfeit and real banknotes. This com-

Fig. 4. Recurrent neural networks (RNNs). Unlike convolutional neural networks, RNNs have recurrent edges.
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petition involves continuous learning, so that the real and 
counterfeit bills become indistinguishable, resulting in the pro-
duction of fake bills that are also virtually indistinguishable 
from the real ones. For instance, the generator receives an input 
of “Dog” and creates a certain image. The generator learns to 
deceive the discriminator, such that the discriminator can out-
put it as a real image, denoted by 1. In contrast, the discrimina-
tor alternately receives fake images created by the generator and 
real images that actually exist and learns to classify an image as 
1 when it is real and 0 when it is fake (Fig. 5). The training of 
the generator and the discriminator occur alternately. The gen-
erator gradually develops into a model that can simulate the ac-
tual distribution well. The loss function of a GAN, including 
the meaning of this learning process, is defined as follows [35]:

min maxV(D,G)= Ex~Pdata(x)[log D(x)]+Ez~Pz(z)[log(1−D(G(z)))]
    G            D

D(x) is a discriminator and a value between 0 and 1; thus, 
D(x) yields a value of 1 if the datum is real and 0 if it is fake. The 
discriminator D(G(z)) has a value of 1 if the datum generated 

by the generator G, G(z), is judged as real and 0 if it is judged as 
fake. From the perspective of how the generator G learns to 
minimize V(D, G), log(1−D(G(z))) must be minimized to make 
the second term of the above equation as small as possible. 
Therefore, log(1−D(G(z))) must be 0, and D(G(z)) must be 1. 
In other words, the generator must be trained to generate fake 
data that are perfect enough for the discriminator to classify as 
genuine. Many different types of GAN structures are being de-
veloped, including cycle GAN, conditional GAN, and progres-
sive growing of GANs [36-38]. Among them, cycle GAN has a 
conversion structure that cycles the output of one domain to 
the input of another (Fig. 6).

Cycle GAN is being studied as a method to freely convert CT 
and magnetic resonance (MR) images in the medical field. In 
one study, CT images were generated from MR images using 
cycle GAN [39]. In the craniofacial surgery field, CT images 
could be generated using this algorithm. A recent large scale 
population-based cohort study found that CT scan exposure of 
young individuals between 0 and 19 years found that CT scan 
exposure was associated with an increased incidence of cancer 

Fig. 5. Structure and learning method of generative adversarial networks (GANs). Two models appear in a GAN: a generator and a discrimi-
nator. The generator generates an image from an input. The generator learns to generate images that, when input to the discriminator, will be 
erroneously classified as real, as denoted by 1. In contrast, the discriminator alternately receives fake images created by the generator and real 
images that actually exist and learns to classify an image as 1 if it is a real image or 0 if it is fake. The training of the generator and the discrimi-
nator occur alternately. The generator gradually develops into a model that can simulate the actual distribution well.

Fig. 6. Cycle generative adversarial network (GAN) structure. Cycle GAN trains a model that can convert between two domains of interest (X, 
Y). It learns by calculating the cycle-consistency loss of images generated by X→Y→X or Y→X→Y. CT, computed tomography; MR, magnetic 
resonance.
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in Koreans. The incidence of many types of lymphoid, hemato-
poietic, and solid cancers significantly increased after CT scan 
exposure. Among individuals who underwent CT scans, the 
overall cancer incidence was higher among exposed than non-
exposed individuals after adjusting for age and sex (incidence 
rate ratio, 1.54; 95% confidence interval, 1.45–1.63; p< 0.001) 
[40]. Despite high radiation risks in infants or children CT im-
ages are an essential tool for the diagnosis and treatment of pa-
tients with cleft lip with or without cleft palate, alveolar cleft, 
craniosynostosis, and pediatric facial bone fractures. In cases 
where a CT scan for infants or children would normally be re-
quired, it might instead be possible to take MR images and con-
vert them into CT images using cycle GAN.

In aesthetic surgery, postoperative photographs can be created 
by inputting preoperative photos because GAN is an image-
generating algorithm. In particular, postoperative photos of 
various results can be created specific to the surgical method. 
GANs can also generate voices, making it possible to generate a 
target voice for a child who needs speech therapy, such that the 
child can listen to the target voice for training purposes. In the 
craniofacial surgery field, the recently published style GAN 
showed the potential to create images with cosmetic deformi-
ties or congenital anomalies [41]. The images generated by 
GANs are not copyrighted; thus, they can be freely used in oth-
er studies.

At this point, GANs have the limitation of it being extremely 
difficult to control the attributes (e.g., gender, age, and hairstyle) 
of the image synthesized through the generator. Moreover, the 
generated image quality is inconsistent. In reality, unlike the re-
sults reported in previous articles, many unnatural images are 
created. Nonetheless, GANs still have the potential to be used 
in various ways, and we think that they have a greater possibili-
ty of being used in plastic surgery than in other medical fields.

BIOSIGNAL DATA AND HEAD AND 
NECK RECONSTRUCTION
Biomedical signals comprise observations of the physiological 
activities of organisms, ranging from gene and protein sequenc-
es to neural and cardiac rhythms [42]. With the development of 
monitoring techniques, such as electrocardiography and elec-
troencephalography, a vast amount of data on biosignals can be 
collected, and AI algorithms can be applied to the collected 
data. AI research using biosignals is being actively conducted 
on models to predict a prognosis. One study reported an algo-
rithm for screening hyperkalemia through deep learning of 
electrocardiograms. Another study reported an algorithm for 
predicting cardiac arrest in advance through deep learning 

[43,44].
In head and neck reconstruction, monitoring of free flaps is 

performed at 1-hour intervals on postoperative day (POD) 1, at 
2-hour intervals on POD 2, and at 4-hour intervals on POD 3–7 
by visual examinations or using Doppler ultrasonography [45]. 
Reports of flap monitoring using near-infrared spectroscopy 
(NIRS) in the plastic surgery field have recently been presented 
[46-48]. The studies reported to date have described NIRS 
monitoring of flaps used for breast reconstruction. To the best 
of our knowledge, few reports have described flap monitoring 
using NIRS after head and neck reconstruction procedures; 
however, it is also possible to use NIRS to monitor free flaps 
used for head and neck reconstruction. An advantage of NIRS 
is that it can monitor muscle flaps with deep tissue (e.g., those 
utilized in facial palsy reconstruction); hence, it would be possi-
ble to use NIRS to monitor invisible and buried free flaps used 
for head and neck reconstruction. These NIRS data constitute 
biosignal data that can be collected in vast quantities. Accord-
ingly, an algorithm that can predict flap failure in advance can 
be imagined. The authors are preparing an AI study related to 
flap monitoring. If we can create an algorithm that predicts flap 
failure in advance through deep learning, we could imagine 
scenarios in which surgeons receive notifications of impending 
flap failure, prompting them to prepare for readmission of the 
patient to the operating room.

LIMITATIONS OF AI IN MEDICINE
Although GAN is a type of unsupervised learning, many AI 
technologies are still based on supervised learning, which re-
sults in some limitations. First, for AI to perform a specific task 
automatically, a large amount of training data is required for 
technical instruction each time, and models must be individu-
ally developed using specific training data. In addition, the phe-
nomenon of overfitting (i.e., excessive adaptation to the learn-
ing data) can occur, and when AI models are applied in real-
world medical contexts, their performance is often poor. There-
fore, the performance observed in the development stage is dif-
ficult to generalize to the actual medical field. Another impor-
tant limitation is that AI algorithms that contain numerous 
variables cannot be intuitively understood by humans; thus, 
even if models achieve a certain level of performance, humans 
cannot fully understand the working principle. In the medical 
field, where algorithms must be applied to real people, it is dif-
ficult to embrace the use of algorithms with opaque operating 
principles that humans cannot comprehend. Finally, the perfor-
mance of an AI system depends not only on the sophistication 
of its algorithm, but also on whether it learns a large amount of 
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high-quality data. After ensuring patient safety and achieving a 
basic level of performance using high-quality data, the perfor-
mance of a model should be improved by relearning using field 
data from multiple institutions.

CONCLUSION
Medical AI technology will ultimately play a key role in solving 
many of the problems facing healthcare. This will be possible 
through convergence and collaboration in various fields, in-
cluding medicine, engineering, policy, and industry. Craniofa-
cial surgeons do not need to understand and know every detail 
of AI technology at the level of engineers specializing in AI, but 
it is very important for them to understand its core characteris-
tics and technical architecture and acquire knowledge on how 
to evaluate the performance and characteristics of developed 
technologies.
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