• Title/Summary/Keyword: Artificial intelligence techniques

Search Result 672, Processing Time 0.027 seconds

A Study on Mechanism of Intelligent Cyber Attack Path Analysis (지능형 사이버 공격 경로 분석 방법에 관한 연구)

  • Kim, Nam-Uk;Lee, Dong-Gyu;Eom, Jung-Ho
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.93-100
    • /
    • 2021
  • Damage caused by intelligent cyber attacks not only disrupts system operations and leaks information, but also entails massive economic damage. Recently, cyber attacks have a distinct goal and use advanced attack tools and techniques to accurately infiltrate the target. In order to minimize the damage caused by such an intelligent cyber attack, it is necessary to block the cyber attack at the beginning or during the attack to prevent it from invading the target's core system. Recently, technologies for predicting cyber attack paths and analyzing risk level of cyber attack using big data or artificial intelligence technologies are being studied. In this paper, a cyber attack path analysis method using attack tree and RFI is proposed as a basic algorithm for the development of an automated cyber attack path prediction system. The attack path is visualized using the attack tree, and the priority of the path that can move to the next step is determined using the RFI technique in each attack step. Based on the proposed mechanism, it can contribute to the development of an automated cyber attack path prediction system using big data and deep learning technology.

Research on the change of perception of abandoned dogs through big data analysis

  • Jang, Ji-Yun;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.115-123
    • /
    • 2021
  • This study aims to analyze the changes in public perception of abandoned dogs through big data analysis. Data from January 2017 to July 2020 were collected to analyze how the quantitative change in social issues with abandoned dogs as a keyword had an effect on public perception of abandoned dogs, and factors that influence positive/negative perceptions. As a result of the study, it was confirmed that the number of stray dogs and the number of documents related to stray dogs had a positive correlation, and specific time series changes were found through various analysis techniques such as text mining, network analysis, and sentiment analysis. This study will have significance as basic data that can be used for policy establishment or other research on abandoned dogs. we hope it will help to solve problems so as to improve awareness of abandoned dogs and develop a sense of responsibility.

Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery (인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법)

  • Lee, Seung Jae;Yoon, Ji Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.311-318
    • /
    • 2021
  • Research has been ongoing to detect ships from offshore photographs for a variety of reasons, including maritime security, identifying international trends, and social scientific research. Due to the development of artificial intelligence, R-CNN models for object detection in photographs and images have emerged, and the performance of object detection has risen dramatically. Ship detection in offshore photographs using the R-CNN model has also begun to apply to satellite photography. However, satellite images project large areas, so various objects such as vehicles, landforms, and buildings are sometimes recognized as ships. In this paper, we propose a novel methodology to improve the performance of ship detection in satellite photographs using R-CNN series models. We separate land and sea via marker-based watershed algorithm and perform morphology operations to specify RoI one more time, then detect vessels using R-CNN family models on specific RoI to reduce typology. Using this method, we could reduce the misdetection rate by 80% compared to using only the Fast R-CNN.

Big Data Model for Analyzing Plant Growth Environment Informations and Biometric Informations (농작물 생육환경정보와 생체정보 분석을 위한 빅데이터 모델)

  • Lee, JongYeol;Moon, ChangBae;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.15-23
    • /
    • 2020
  • While research activities in the agricultural field for climate change are being actively carried out, smart agriculture using information and communication technology has become a new trend in line with the Fourth Industrial Revolution. Accordingly, research is being conducted to identify and respond to signs of abnormal growth in advance by monitoring the stress of crops in various outdoor environments and soil conditions. There are also attempts to analyze data collected in real time through various sensors using artificial intelligence techniques or big data technologies. In this paper, we propose a big data model that is effective in analyzing the growth environment informations and biometric information of crops by using the existing relational database for big data analysis. The performance of the model was measured by the response time to a query according to the amount of data. As a result, it was confirmed that there is a maximum time reduction effect of 23.8%.

Image-based CAPTCHA Using Multi-Image Composition and Its Secure Operation (복수의 이미지를 합성하여 사용하는 이미지 기반의 캡차와 이를 위한 안전한 운용 방법)

  • Kang, Jeon-Il;Maeng, Young-Je;Kim, Koon-Soon;Nyang, Dae-Hun;Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.153-166
    • /
    • 2008
  • According to the growth of the internet and the usage of software agents, the CAPTCHA that is a method for taking apart humans and computers has been widely deployed and used. As the results of many research activities, the CAPTCHA, which is spoken for a distorted image material including random text, has known to be easily breakable via artificial intelligence techniques. As one of alternatives for those text-based CAPTCHAs, methods using photos are concerned and various image-based CAPTCHAs are suggested. However, image-based CAPTCHAs still have some problems. In this paper, we discuss what are the problems in each image-based CAPTCHA and propose a new image-based CAPTCHA using image composition as the solution of those problems. Furthermore, for the secure operation of the CAPTCHA, we suggest a communication protocol that works without the virtual session and consider possible security and usability problems in the protocol.

Breaking character-based CAPTCHA using color information (색상 정보를 이용한 문자 기반 CAPTCHA의 무력화)

  • Kim, Sung-Ho;Nyang, Dae-Hun;Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.105-112
    • /
    • 2009
  • Nowadays, completely automated public turing tests to tell computers and humans apart(CAPTCHAs) are widely used to prevent various attacks by automated software agents such as creating accounts, advertising, sending spam mails, and so on. In early CAPTCHAs, the characters were simply distorted, so that users could easily recognize the characters. From that reason, using various techniques such as image processing, artificial intelligence, etc., one could easily break many CAPTCHAs, either. As an alternative, By adding noise to CAPTCHAs and distorting the characters in CAPTCHAs, it made the attacks to CAPTCHA more difficult. Naturally, it also made users more difficult to read the characters in CAPTCHAs. To improve the readability of CAPTCHAs, some CAPTCHAs used different colors for the characters. However, the usage of the different colors gives advantages to the adversary who wants to break CAPTCHAs. In this paper, we suggest a method of increasing the recognition ratio of CAPTCHAs based on colors.

Dynamic Pricing Based on Reinforcement Learning Reflecting the Relationship between Driver and Passenger Using Matching Matrix (Matching Matrix를 사용하여 운전자와 승객의 관계를 반영한 강화학습 기반 유동적인 가격 책정 체계)

  • Park, Jun Hyung;Lee, Chan Jae;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.118-133
    • /
    • 2020
  • Research interest in the Mobility-as-a-Service (MaaS) concept for enhancing users' mobility experience is increasing. In particular, dynamic pricing techniques based on reinforcement learning have emerged since adjusting prices based on the demand is expected to help mobility services, such as taxi and car-sharing services, to gain more profit. This paper provides a simulation framework that considers more practical factors, such as demand density per location, preferred prices, the distance between users and drivers, and distance to the destination that critically affect the probability of matching between the users and the mobility service providers (e.g., drivers). The aforementioned new practical features are reflected on a data structure referred to as the Matching Matrix. Using an efficient algorithm of computing the probability of matching between the users and drivers and given a set of precisely identified high-demand locations using HDBSCAN, this study developed a better reward function that can gear the reinforcement learning process towards finding more realistic dynamic pricing policies.

Demand Prediction of Furniture Component Order Using Deep Learning Techniques (딥러닝 기법을 활용한 가구 부자재 주문 수요예측)

  • Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

Considerations for Applying SDN to Embedded Device Security (임베디드 디바이스 보안을 위한 SDN 적용 시 고려사항)

  • Koo, GeumSeo;Sim, Gabsig
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.51-61
    • /
    • 2021
  • In the era of the 4th industrial revolution symbolized by the Internet of Things, big data and artificial intelligence, various embedded devices are increasing exponentially. These devices have communication functions despite their low specifications, so the possibility of personal information leakage is increasing, and security threats are also increasing. Embedded devices can have security issues at most levels, from hardware to services over the network. In addition, it is difficult to apply general security techniques because it has characteristics of resource constraints such as low specifications and low power, and the related technology has not been standardized. In this study, we present vulnerabilities and possible problems and considerations in applying SDN to embedded devices in consideration of structural characteristics and real-world discovered cases. This study presents vulnerabilities and possible problems and considerations when applying SDN to embedded devices. From a hardware perspective, we consider the problems of Wi-Fi chips and Bluetooth, the problems of open flow implementation, SDN controllers, and examples of structural properties. SDN separates the data plane and the control plane, and provides a standardized interface between the two, enabling efficient communication control. It can respond to the security limitations of existing network technologies that are difficult to respond to rapid changes.

Study on the Perception and Application of AI in Korean Medicine through Practice and Questionnaire of Korean Medicine Using a Diagnostic Expert System (진단전문가시스템을 이용한 한의 실습의 설문 조사를 통한 AI에 대한 인식 및 활용방안 고찰)

  • Yang, Ji-Hyuk;Woo, Jeong-A;Shin, Dong-Ha;Park, Suho;Kwon, Young-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • This study conducted a questionnaire for students of Pusan National University Graduate School of Korean Medicine who practiced using the Oriental Medicine Diagnosis System (ODS). From the questionnaire, this study investigated current state of application and perception of AI in Korean Medicine and explored the direction of ODS improvement and utilization. The survey questions consisted of six questions examining the satisfaction of the diagnostic expert system, five questions evaluating the availability of the diagnostic expert system, and six questions to predict the impact of AI on the Korean medicine community. The survey analysis showed high satisfaction with practice using ODS. On the other hand, the possibility of using ODS, especially in clinical use, was evaluated as relatively low compared to the satisfaction of the practice. Therefore, the overall impact of AI on the Korean medical community is not expected to be large. Although there are difficulties in standardization of clinical data due to the academic characteristics of Korean medicine, it is necessary to continue attempts to apply AI. By actively introducing educational tools using the latest AI techniques to the diagnosis experience and doctor-patient role in a practice, students will be able to increase their satisfaction with their practice and respond appropriately to the state-of-the-art medical environment.