• Title/Summary/Keyword: Artificial ground

Search Result 776, Processing Time 0.027 seconds

Design and Implementation of Artificial Fish-reef combined with IT Devices (IT 정보기기 융합 인공어초 설계 및 구현)

  • Kim, Won-young;Lee, Young-seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.141-147
    • /
    • 2013
  • An artificila fish-reef is a artificail structure installed at marine ranching under the littoral sea. The artificial fish-reefs provide the function of fish spawning ground, habitation, nursery ground, and enhance the productivity of fising industry devastated by environmental pollution. After the installation of artificila fish-reef, continuous monitoring is demanded to check the validity of artificila fish-reef plan. However, the support of follow-up management is impossible because of the lack of a huge budget and professional manpower. Therefore, the artificial fish-reef combined with IT devices can be controled IT devices through the IT artificial fish-reef management system, and collect the marine environment information for the fair management. This paper shows the example of systematization for the management of artificial fish-reef based on the marine rancing management system.

Application of electrical resistivity for assessing characterizations of frozen and unfrozen soils

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.205-214
    • /
    • 2024
  • Permafrost refers to the condition where the ground is frozen. It is crucial to review and evaluate the ground's characteristics before construction. In this study, electrical resistivity surveying is chosen as the investigative technique to apply and illustrate the results on the state of permafrost ground and to summarize its applicability. Field experiments are conducted in the Yeoncheon area of South Korea, which has a freezing index of 522.6°C·days. The target area is categorized into two ground conditions: the first where the original ground freezes, and the second involves excavating the original ground up to a depth of 3 meters, backfilling it, and then artificially injecting fluid. Thus, frozen ground conditions are simulated under both natural and artificial circumstances. Electrical resistivity surveys are performed under both above-freezing and sub-zero temperature conditions, with the experiments conducted at sub-zero temperatures revealing relatively more high-resistivity zones due to the temperature conditions. In this area, the distribution of soil moisture content is also investigated using the Time Domain Reflectometry (TDR) technique. It is observed that the ground into which water is artificially injected had a relatively higher moisture content, although the difference is minor. Finally, a 3D map of the target ground is constructed based on the measured electrical resistivity values, and through this, the distribution of porosity, a crucial design parameter, is also depicted. This research demonstrates that the electrical resistivity technique can effectively evaluate the state of frozen and unfrozen ground and further suggests that it can detailed extract the characteristics of the target ground.

A Study on the Effect of Air Temperature and Ground Temperature Mitigation from Several Arrangements of Urban Green (도시녹지의 기온 및 지온 완화효과에 관한 연구)

  • 이은엽;문석기;심상렬
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.1
    • /
    • pp.65-78
    • /
    • 1996
  • To study the temperature mitigation effects from urban green, several arrangements of green spaces were selected and air/ground temperatures were measured in Chongju city area. The results of this study can be summarized as follows; 1. It was found that the natural ground materials effect more affirmatively on the air and ground temperature than artificial ones do. The best results were recorded from the grass surface presenting highest mitigation effect and lowest daily temperature deviation. 2. Temperature mitigation effects of Tree-Shade on ground are different from season, ground material, and crown-size. Them most effects were found in interlocking block, the least in grass surface among recorded 2 seasons and 3 materials. In case of air temperature, the effects were more or less decreased in most cases. 3. From the survey, it was confirmed that the smaller urban greens can do its role of temperature mitigation as larger ones does. In case of this study, the effect was recorded about 2.3$^{\circ}C$.

  • PDF

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.

A Study on the Ground Fault Current Distribution by Single Phase-to-Neutral Fault Tests in Power Distribution System (배전계통에서 1선 지락고장 시험에 의한 지락고장전류 분류에 관한 연구)

  • Kim, Kyung-Chul;You, Chang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.37-44
    • /
    • 2013
  • Phase to ground faults are possibly one of the maximum number of faults in power distribution system. During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multigrounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A simplified equivalent circuit model for the distribution system under case study calculated by using MATLAB gives results very close to the ground fault current distribution yielded by field tests.

Simulation of Ground Motions from Gyeongju Earthquake using Point Source Model (점지진원 모델을 이용한 경주 지진으로 인한 지반운동 생성)

  • Ha, Seong Jin;Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.537-543
    • /
    • 2016
  • In low to moderate seismic regions, there are limited earthquake ground motion data recorded from past earthquakes. In this regard, the Gyeongju earthquake (M=5.8)occurred on September 12, 2016 produces valuable information on ground motions. Ground motions were recorded at various recording stations located widely in Korean peninsula. Without actual recoded ground motions, it is impossible to make a ground motion prediction model. In this study, a point source model is constructed to accurately simulate ground motions recorded at different stations located on different soil conditions during the Gyeongju earthquake. Using the model, ground motions are generated at all grid locations of Korean peninsula. Each grid size has $0.1^{\circ}(latitude){\times}0.1^{\circ}(longitude)$. Then a contour hazard map is constructed using the peak ground acceleration of the simulated ground motions.

Development of Impact Evaluation and Diagnostic Indicators for Sinkholes

  • Lee, KyungSu;Kim, TaeHyeong
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.53-60
    • /
    • 2018
  • Based on the previous studies on sinkholes and ground subsidence conducted until date, the factors affecting the occurrence of sinkholes can be divided into natural environmental factors and human environmental factors in accordance with the purpose of the study. Furthermore, to be more specific, the human environment can be classified into the artificial type and the social type. In this study, the assessment indices for assessing risks of sinkholes and ground subsidence were developed by performing AHP analysis based on the results of the study by Lee et al. (2016), who selected the risk factors for the occurrence of sinkholes by performing Delphi analysis targeting relevant experts. Analysis showed that the artificial environmental factors were of significance in affecting the occurrence of sinkholes. Explicitly, the underground factors were found to be of importance in the natural environment, and among them, the level of underground water turned out to be an imperative influencing factor. In the artificial environment, the underground and subterranean structures exhibited similar importance, and in the underground structures, the excessive use of the underground space was found to be an important influencing factor. In the subterranean ones, the level of water leakage and the erosion of the water supply and sewage piping system were the influential factors, and in the surface, compaction failure was observed as an imperative factor. In the social environment, the regional development, and above all, the groundwater overuse were found to be important factors. In the managemental and institutional environment, the improper construction management proved to be the most important influencing factor.

Application of Artificial Neural Network with Levenberg-Marquardt Algorithm in Geotechnical Engineering Problem (Levenberg-Marquardt 인공신경망 알고리즘을 이용한 지반공학문제의 적용성 검토)

  • Kim, Young-Su;Lee, Jae-Ho;Seo, In-Shik;Kim, Hyun-Dong;Shin, Ji-Sub;Na, Yun-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.987-997
    • /
    • 2008
  • Successful design, construction and maintenance of geotechnical structure in soft ground and marine clay demands prediction, control, stability estimation and monitoring of settlement with high accuracy. It is important to predict and to estimate the compression index of soil for predicting of ground settlement. Lab. and field tests have been and are indispensable tools to achieve this goal. In this paper, Artificial Neural Networks (ANNs) model with Levenberg-Marquardt Algorithm and field database were used to predict compression index of soil in Korea. Based on soil property database obtained from more than 1800 consolidation tests from soils samples, the ANNs model were proposed in this study to estimate the compression index, using multiple soil properties. The compression index from the proposed ANN models including multiple soil parameters were then compared with those from the existing empirical equations.

  • PDF

High altitude powered lighter-than-air vehicle as remote sensing platform

  • Onda, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1361-1364
    • /
    • 1990
  • In order to tackle global environmental problems such as destruction of the ozone layer or climatic changes due to atmospheric temperature increase, the acquisition of plentiful and precise data is necessary. Therefore, a means of conducting long-lasting high-resolution measurements over broad areas is required. A feasibility study has been made on a high altitude (20km), super-pressured helium-filled PLTA (Powered Ligher-than-Air) vehicle as an ideal platform for environmental observation. It has a long service life and carries a larger payload than an artificial satellite. This PLTA platform uses an electric propulsion system to maintain position in space against wind currents. The thruster is driven by solar power acquired from solar cells. For night use, solar energy is stored in regenerative fuel cells. This study focuses on energy balance and structural analysis of the hull and platform. The platform is capable of conducting high resolution remote sensing as well as having the capability to serve as a telecommunications relay. The platform could replace a number of ground-based telecommunications relay facilities, guaranteeing sufficient radio frequency intensity to secure good quality telecommunication transmittal. The altitude at which the platform resides has the lowest wind flow in the lower stratosphere, and permits viewing from the ground within a 1,000km range. Because this altitude is much lower than that required of an artificial satellite, the measuring resolution is a couple of thousand times higher than with artificial satellites. The platform can also be used to chase typhoons and observe them from their sources in tropical regions.

  • PDF

Public's Recognition of the Space Object's Re-entry Situations and the National Space Disaster Management Policy (우리나라 국민의 우주위험인식 수준과 국가 재난정책)

  • Kim, Syeun;Cho, Sungki;Hong, Jeongyoo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.84-92
    • /
    • 2016
  • Since the mankind started its space mission, the number of artificial space objects has been increasing exponentially. It contains not just the space machines which are in use but the machines which are out of order. Meantime, those dead machines are being a serious danger, a real threat to human's lives and property because of it could re-enter into the earth's atmosphere and fall to the ground causing mega-disaster. As the number of space activities gets growing so far, the re-entry of the space objects will be a lot more happened in the future. Therefore, not just natural space object like asteroids but the artificial space object like artificial satellite and space station can cause the disaster by falling to the ground. To protect our nation and our property, the government has set up the space disaster management center in Korea astronomy and Space science Institute. In this study, we surveyed public's recognition of the space object's re-entry situation and analyzed it to contribute building national space disaster management policy.