• Title/Summary/Keyword: Artificial bone

Search Result 225, Processing Time 0.031 seconds

Current Methods for the Treatment of Alveolar Cleft

  • Kang, Nak Heon
    • Archives of Plastic Surgery
    • /
    • v.44 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • Alveolar cleft is a tornado-shaped bone defect in the maxillary arch. The treatment goals for alveolar cleft are stabilization and provision of bone continuity to the maxillary arch, permitting support for tooth eruption, eliminating oronasal fistulas, providing an improved esthetic result, and improving speech. Treatment protocols vary in terms of the operative time, surgical techniques, and graft materials. Early approaches including boneless bone grafting (gingivoperiosteoplasty) and primary bone graft fell into disfavor because they impaired facial growth, and they remain controversial. Secondary bone graft (SBG) is not the most perfect method, but long-term follow-up has shown that the graft is absorbed to a lesser extent, does not impede facial growth, and supports other teeth. Accordingly, SBG in the mixed dentition phase (6-11 years) has become the preferred method of treatment. The most commonly used graft material is cancellous bone from the iliac crest. Recently, many researchers have investigated the use of allogeneic bone, artificial bone, and recombinant human bone morphogenetic protein, along with growth factors because of their ability to decrease donor-site morbidity. Further investigations of bone substitutes and additives will continue to be needed to increase their effectiveness and to reduce complications.

Effects of Hansu-Daebowon (HDW) on RANKL-induced Osteoclast Differentiation and Bone Loss in Mammal Model (한수대보원이 포유동물인 생쥐 모델에서 골 손실 및 RANKL 유도 파골세포 분화에 미치는 영향)

  • Jang, Si-sung;Ryu, Hong-sun;Jeon, Chan-yong;Hwang, Gwi-seo
    • The Journal of Internal Korean Medicine
    • /
    • v.40 no.1
    • /
    • pp.58-69
    • /
    • 2019
  • Objective: This study investigated the effects of Hansu-Daebowon (HDW) on bone resorption in vitro and bone loss in vivo. Methods: Osteoclast differentiation was measured by counting TRAP (+) MNC formed from RAW 264.7 in the presence of RANKL. Bone pit formation was determined in an artificial bone slice loaded with RANKL-stimulated osteoclasts. To elucidate the mechanisms of the inhibitory effects of HDW on bone resorption and osteoclast differentiation, osteoclastogenic genes (i.e. TRAP, MMP-9, NFATc1, c-Fos, and Cathepsin K) were measured using real time PCR. Furthermore, bone loss was observed using micro-CT in an LPS-treated mammal model. Results: HDW inhibited the bone pit formation in vitro and inhibited bone loss in vivo. Moreover, HDW decreased the number of TRAP (+) MNCs in the presence of RANKL, and HDW inhibited the expressions of cathepsin K, MMP-9, TRAP, NFATc1, and c-Fos in the osteoclasts. Conclusion: HDW exerts inhibitory effects on bone loss and bone resorption resulting from the inhibitions of osteoclast differentiation and osteoclastogenic gene expression.

Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers (자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발)

  • Choi, Jin-Wook;Lim, Sang-Hyun;Hong, You-Sun;Kim, Byung-Soo
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.160-169
    • /
    • 2008
  • Bakcground: To treat anastomosis site stenosis and occlusion of the artificial vessels used in vascular surgery, tissue-engineered artificial vessels using autologous cells have been constructed. We developed artificial vessels using a polymer scaffold and autologous bone marrow cells and performed an in vivo evaluation. Material and Method: We manufactured a vascular scaffold using biodegradable PLCL (poly lactide-co-${\varepsilon}$-caprolactone) and PGA (poly glycolic acid) fibers. Then we seeded autologous bone marrow cells onto the scaffold. After implantation of the artificial vessel into the abdominal aorta, we performed an angiography 3 weeks after surgery. After the dogs were euthanized we retrieved the artificial vessels and performed histological analysis. Result: Among the six dogs, 2 dogs died of massive bleeding due to a crack in the vascular scaffold 10 days after the operation. The remaining four dogs lived for 3 weeks after the operation. In these dogs. the angiography revealed no stenosis or occlusion at 3 weeks after the operation. Gross examination revealed small thrombi on the inner surface of the vessels and the histological analysis showed three layers of vessel structure similar to the native vessel. Immunohistochemical analysis demonstrated regeneration of the endothelial and smooth muscle cell layers. Conclusion: A tissue engineered vascular graft was manufactured using a polymer scaffold and autologous bone marrow cells that had a structure similar to that of the native artery. Further research is needed to determine how to accommodate the aortic pressure.

EXPERIMENTAL STUDIES ON THE TISSUE RESPONSE OF HA COATED, TPS AND $Al_2O_3$ ARTIFICIAL ROOT IMPLANTS (HA, TPS 및 $Al_2O_3$ 인공치근 매식체의 조직반응에 관한 실험적 연구)

  • Kim, Sun-Young;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.267-284
    • /
    • 1991
  • Since the concept of a direct contact between bone and implants, without interposed soft- tissue layers, was reported by Dr. $Br{\aa}nemark$, there has been increasing necessity for correct under-standing of bone-implant interface and surrounding tissue response. Beside quality of bone, surgical technique, load applied to implants, one must consider implant materials, design and surface characteristics to obtain osseointegration. In this study HA plasma-sprayed implants, TPS implants and $Al_2O_3$ implants were inserted into the alveolar bone of dog and tissue response was observed with radiograph, stereoscope, light microscope, and scanning electron microscope. Results were as follows : 1. There was rapid and active bone formation in the region adjacent to HA plasma-sprayed implants but in the deep supporting bone only slight bone formation was seen. 2. There was considerable lamella bone formation in the region adjacent to TPS implants and the deep supporting bone became more compact. 3. There was some gap and sclerosing bone formation in the adjacent region of $Al_2O_3$ implants, but there was irregular new bone formation in the deep supporting bone. Therefore, it seems that $Al_2O_3$ is not adequate for osseointegrated implants.

  • PDF

Two-Dimensional Finite Element Analysis of Bone Resorption from the Artificial Hip Replacement (인공고관절 골흡수로 인한 응력분포 변화의 2차원 유한요소 해석)

  • Choi, Hyung-Yeon;Chae, Soo-Won;Kim, Sung-Kon
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Clinically, proximal bone resorption in the femur is frequently seen postoperatively on the follow up XI-rays after total hip replacement (THR). We developed the finite element model of cementless THR. The model is two dimensional side plate model, whereby the three dimensional structural integrity of the bone can be accounted for by a separate two dimensional mesh, a side plate. The subject of this article is the development and application of this two dimensional side plate FEM to study the reverse effect of the various degree of bone resorption of femur after THR. The results of this study indicates that 1) two dimensional side plate model is good and simple alternative to complex three dimensional model and 2) the severity of the proximal bone resorption has the effect of more increasing stress on the cortex at the level of femoral stem tip.

  • PDF

Fatigue Characterization of Glass/Polypropylene Composite Bone Plates Locked with an Artificial Tibia under Moisture Environment (인조골에 체결된 유리섬유/폴리프로필렌 복합재료 고정판의 수분 환경 피로 특성)

  • Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.328-333
    • /
    • 2013
  • In this study, bone plate made of glass/polypropylene composite material which was applied to an artificial bone was tested to check the service ability under fatigue loading. To check serviceability of composite bone plates fatigue test was carried out considering changes in the moisture absorption rate, locking position of screws and loading condition. Test results showed that all the tested specimens had the fatigue life more than one million cycles which was much higher fatigue life than the expected value of 650,000 cycles. Screw position was not critical impact on the deformation of the fracture site. In this paper, the mechanical performance of the glass/polypropylene composite was verified by fatigue test under various water absorption conditions, and this result may give useful information on the design of composite bone plate.

A STUDY OF CHIDED TISSUE REGENERATION FOR IMMEDIATE IMPLANTATION WITH/WITHOUT HA AUGMENTATION : A STUDY IN DOGS (성견에서 발치 직후 Titanium plasma sprayed IMZ 임프란트 이식시 조직유도 재생술에 따른 골 재생력에 관한 연구)

  • Hwang Hie-Seong;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.361-378
    • /
    • 1992
  • The purpose of this investigation was to evaluate the effect of the porous hydroxyapatite particles (Interpore $200^{(R)}$) and guided tissue regeneration membrane ($Gore-Tex^{TM}$ augmentation material) on amount and shape of generating new bone adjacent to implant. Implants were placed immediately after extraction in the bilateral 3rd, 4th premolars of the mandible of the adult dogs. In all experimental groups, artificial bony defects were formed at the buccal cortex area, 3.3mm in width and 3.0mm in depth. In the control group : sutured without HA particles & membranes after placing implants, the experimental group 1 : membrane was place over the artificial bony defect, the experimental group 2 : bony defect was filled with HA particles and covered with membrane. The examination of bone-implant interfaces using light microscope and fluorescent microscope concluded as follows. 1. In all three experimental groups, osseointegration was observed without epithelial migration. 2. In the healing degree of bony defect area, the experimental group 1, 2 showed more prominent healing than control group, and the experimental group 1 showed the most excellent bone formation. 3. In fluorescent microscopic finding, bone remodeling was observed in regenerated bone tissue at defect area of experimental group 1, but in experimental group 2, irregular, discontinuous linear fluorescence was observed at the lower portion of defect area and sign of bone remodeling was weak.

  • PDF

A Pilot study of poroelastic modulus measurement in micro-bone tissue (미세 골조직의 공극탄성계수 측정을 위한 예비 연구)

  • 박영환;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1038-1041
    • /
    • 2004
  • In this study, developed a micro-level experimental setup to measure pore pressure and poroelastic modulus in various strain and strain rate about a stress in micro-structure of bone tissue. It is essential device in the development of the model to analysis the interstitial bone fluid flow of the lacuno-canalicular system to be known that would effect on the bone remodeling. The constitution of the experimental setup is as follows, microscopic image processing system; actuator control unit; load measurement system. A pilot study was used an artificial chemical wood to have similar poroelastic property of bone matrix and conducted to validate the suitability of the measurement system.

  • PDF

A Study on the Bone Resorption of Artificial Hip Replacement by Two-Dimensional FEM (2차원 Side Plate FEM을 이용한 인공고관절 골흡수 연구)

  • Choi, H.Y.;Chae, S.W.;Kim, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.75-78
    • /
    • 1994
  • Clinically, proximal bone resorption in the femur is frequently seen postoperatively on the follow up X-rays after total hip replacement(THR). We developed the finite element model of cementless THR. The model is two dimensional side plate model, whereby the three dimensional structural integrity of the bone can be accounted for by a separate two dimensional mesh, a side plate. The subject of this article is the development and application of this two dimensional side plate FEM to study the reverse effect of the various degree of bone resorption of femur after THR. The results of this study indicates that two dimensional side plate model is good and simple alternative to complex three dimensional model and the severity of the proximal bone resorption has the effect of more increasing stress on the cortex at the level of femoral stem tip.

  • PDF