• Title/Summary/Keyword: Artificial bone

Search Result 225, Processing Time 0.031 seconds

In vitro and in vivo Application of PLGA Nanofiber for Artificial Blood Vessel

  • Kim, Mi-Jin;Kim, Ji-Heung;Yi, Gi-Jong;Lim, Sang-Hyun;Hong, You-Sun;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the dual-layered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).

Biodegradable Inorganic-Organic Composite Artiticial Bone Substitue -Part2. Collagen purification and its physical and biological properties-

  • Hwal Suh
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.341-346
    • /
    • 1994
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atel- ocollagen was produced. The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength.

  • PDF

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Use of Wet Chemical Method to Prepare β Tri-Calcium Phosphates having Macro- and Nano-crystallites for Artificial Bone

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.670-675
    • /
    • 2016
  • Calcium phosphate crystallites were prepared by wet chemical method for use in artificial bone. In order to obtain ${\beta}$-tricalcium phosphate (TCP), nano-crystalline calcium phosphate (CaP) was precipitated at $37^{\circ}C$ and at $pH5.0{\pm}0.1$ under stirring using highly active $Ca(OH)_2$ in DI water and an aqueous solution of $H_3PO_4$. The precipitated nano-crystalline CaP solution was kept at $90^{\circ}C$ for the growth of CaP crystallites. Through the growing process of CaP crystallites, we were able to obtain various sizes of rectangular CaP crystallites according to the crystal growing times. Dry nano-crystalline CaP powders at $37^{\circ}C$ were mixed with dry macro-crystalline CaP crystallites and the shaped mixture sample was fired at $1150^{\circ}C$ to make a ${\beta}-TCP$ block. Several tens of nm powders were uniformly coated on the surface, which was comprised of powders of several tens of ${\mu}m$, using a vibrator. The mixing ratio between the nanometer powders and the micrometer powders greatly affected the mechanical strength of the mixture block; the most appropriate ratio of these two materials was 50 wt% to 50 wt%. The sintered block showed improved mechanical strength, which was caused by the solid state interaction between the nano-crystalline ${\beta}-TCP$ and the macro-crystalline ${\beta}-TCP$.

The Etiology and Treatment of the Softened Phallus after the Radial Forearm Osteocutaneous Free Flap Phalloplasty

  • Kim, Seok-Kwun;Kim, Tae-Heon;Yang, Jin-Il;Kim, Myung-Hoon;Kim, Min-Soo;Lee, Keun-Cheol
    • Archives of Plastic Surgery
    • /
    • v.39 no.4
    • /
    • pp.390-396
    • /
    • 2012
  • Background The radial forearm osteocutaneous free flap is considered to be the standard technique for penile construction. One year after their operation, most patients experience a softened phallus, so that they suffer from difficulties in sexual intercourse. In this report, we present our experience with phalloplasty by radial forearm osteocutaneous free flap, as well as an evaluation of the etiology and treatment of the softened phallus. Methods Between March 2005 and February 2010, 58 patients underwent phalloplasty by radial forearm osteocutaneous free flap. Most of their neophallus had been softened subjectively and among them, 12 patients who wanted correction were investigated. We performed repetitive fat injection, artificial dermis grafting, silicone rod insertion, and rib bone with cartilaginous tip graft. Physical examination, plain radiograph, computed tomography, bone scintigraphy, and satisfaction scores were investigated. Results Most of the participants' penises have been softened after phalloplasty, and the skin elasticity had been also decreased. On plain radiograph, the distal end of the bone was self-rounded; however, the bone shape of the neophallus had no significant interval changes or resorption. Computed tomography showed equivocal density of cortical bone. On bone scintigraphy, the bone metabolism was active at 3 months postoperatively, and remained active 9 years postoperatively. Conclusions The use of a rib bone with cartilaginous tip graft could be an option for improvement of the softened phallus. Silicon rod insertion is also worth considering for rigidity of the softened phallus. Decreased rigidity due to soft tissue atrophy could be alleviated with repeated fat injection and artificial dermis grafting.

Effect of Calvarial Cell Inoculated Onto the Biodegradable Barrier Membrane on the Bone Regeneration (흡수성 차폐막에 접목된 두개관골세포의 골조직 재생에 미치는 영향)

  • Yu, Bu-Young;Lee, Man-Sup;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.483-509
    • /
    • 1999
  • Biodegradable barrier membrane has been demonstrated to have guided bone regeneration capacity on the animal study. The purpose of this study is to evaluate the effects of cultured calvarial cell inoculated on the biodegradable barrier membrane for the regeneration of the artificial bone defect. In this experiment 35 Sprague-Dawley male rats(mean BW 150gm) were used. 30 rats were divided into 3 groups. In group I, defects were covered periosteum without membrane. In group II, defects were repaired using biodegradable barrier membrane. In group III, the defects were repaired using biodegradable barrier membrane seeded with cultured calvarial cell. Every surgical procedure were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). After anesthesia, 5 rats were sacrificed by decapitation to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. The membrane were inserted on the artificial bone defect after 3 days of culture. A single 3-mm diameter full-thickness artificial calvarial defect was made in each animal by using with bone trephine drill. After the every surgical intervention of animal, all of the animals were sacrificed at 1, 2, 3 weeks after surgery by using of perfusion technique. For obtaining histological section, tissues were fixed in 2.5% Glutaraldehyde (0.1M cacodylate buffer, pH 7.2) and Karnovsky's fixative solution, and decalcified with 0.1M disodium ethylene diaminetetraacetate for 3 weeks. Tissue embeding was performed in paraffin and cut parallel to the surface of calvaria. Section in 7${\mu}m$ thickness of tissue was done and stained with Hematoxylin-Eosin. All the specimens were observed under the light microscopy. The following results were obtained. 1 . During the whole period of experiment, fibrous connective tissue was revealed at 1week after surgery which meant rapid soft tissue recovery. The healing rate of defected area into new bone formation of the test group was observed more rapid tendency than other two groups. 2 . The sequence of healing rate of bone defected area was as follows ; test group, positive control, negative control group. 3 . During the experiment, an osteoclastic cell around preexisted bone was not found. New bone formation was originated from the periphery of the remaing bone wall, and gradually extended into central portion of the bone defect. 4 . The biodegradable barrier membrane was observed favorable biocompatibility during this experimental period without any other noticeable foreign body reaction. And mineralization in the newly formed osteoid tissue revealed relatively more rapid than other group since early stage of the healing process. Conclusively, the cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of regeneration of artificial bone defects of alveolar bone. This study thus demonstrates a tissue-engineering the approach to the repair of bone defects, which may have clinical applications in clinical fields of the dentistry including periodontics.

  • PDF

Cranioplasty with Custom-made Artificial Bone after Resection of Multilobular Bone Tumor in a Dog (개의 다엽성 골종양 제거후 커스텀 메이드 인공뼈를 이용한 두개골성형술)

  • Choi, Sungjin;Honnami, Muneki;Liu, I-Li;Yamamoto, Kenichi;Ohba, Shinsuke;Echigo, Ryosuke;Suzuki, Shigeki;Nishimura, Ryouhei;Chung, Ung-Il;Sasaki, Nobuo;Mochizuki, Manabu
    • Journal of Veterinary Clinics
    • /
    • v.31 no.1
    • /
    • pp.46-50
    • /
    • 2014
  • A 7-year-old spayed female Welsh corgi presented with a mass of the skull. The mass was diagnosed as multilobular bone tumor and surgically removed. To treat a large bone defect after the tumor removal, custom-made artificial bone fabricated by a 3-dimensional ink-jet printer was implanted in the defect. Follow-up computed tomography evaluation was performed for 4.3 years. The implant was well integrated with the skull and had covered the large bone defect during the follow-up period. Gradual degradation of the implant began 6 weeks after surgery. It provides an additional option for the treatment of large bone defect.

The Infection Rate in Case of Cranioplasty According to Used Materials and Skull Defect Duration (두개골 성형술의 사용 재료와 수술 시기에 따른 감염율)

  • Kim, Young-Woo;Yoo, Do-Sung;Kim, Dal-Soo;Huh, Pil-Woo;Cho, Kyung-Suck;Kim, Jae-Gun;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup2
    • /
    • pp.216-220
    • /
    • 2001
  • Objective : Cranioplasty is required to protect underlying brain, to correct major aesthetic deformities, or both. The ideal material for this purpose is autogenous bone. When this is not available, alloplastic or artificial materials may be used. In this study authors compared the infection rate according to the cranioplasty materials(the frozen autologous bone vs. bone cement), and duration of the skull defect. Materials : Between May 1994 and December 1999, 111 patients with skull defect treated with cranioplasty(82 cases of frozen autologous bone and 29 cases of artificial bone material) were included in this study. There were 77 males and 34 females with a mean age of 41.4 years(range 1-85 years). 57 patients had head trauma and 54 had non-traumatic insults. According to the duration of skull defect, there were 28 cases under 1 month, 33 cases of 1-2 months, 15 cases of 2-3 months, 20 cases of 3-6 months and 15 cases over 6 months of duration. Results : Overall infection rate was 9.9%. In cases with frozen autologous bone and artificial bone material, the infection rate was 8.5% and 13.7%, respectively. The infection rate according to the duration of skull defect was 3.6%(among 28 cases) under 1 month of age, while those were 12%(4 among 33 cases) at 1-2 months, 20%(3 among 15 cases) at 2-3 months, 5%(1 among 20 cases) at 3-6 months and 13%(2 among 15 cases) over 6 months. Accoring to the underlying disease, the infection rate in traumatic cases was 12%(7 among 57 cases) and that in non-traumatic one was 3.7%(2 among 54 cases). Conclusion : From this study, it appears that skull defect should be repaired as soon as possible, because early cranioplasty can lower the infection rate. And surgeons could save the patients' cranial bone as possible as they can because autologous bone is not only cost effective in cosmatic purpose but lower the infection rate.

  • PDF

THE EFFECT OF HUMAN DBM($GRAFTON^{(R)}$) GRAFT ON SKULL DEFECT IN THE RABBIT (가토의 두개골 결손부에 이식한 human DBM ($Grafton^{(R)}$)의 효과)

  • Kim, Jin-Wook;Park, In-Suk;Lee, Sang-Han;Kim, Chin-Soo;Jang, Hyun-Jung;Kwon, Tae-Geon;Kim, Hyun-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.118-126
    • /
    • 2006
  • In oral and maxillofacial surgery, bone graft is very important procedure for functional and esthetic reconstruction. So, many researcher studied about bone graft material like autogenous bone, allograft bone and artificial bone materials. The purpose of this study is to evaluate the quantity of bone generation induced by $Grafton^{(R)}$ graft, human allogenic demineralized bone matrix. Total 24 sites of artificial bony defects prepared using trephin bur(diameter 8 mm) on parietal bone of six adult New Zealand White rabbits. Experimental group had six defect sites which grafted $Grafton^{(R)}$(0.1 cc). Active control group had nine defect sites, into which fresh autogenous bone harvested from own parietal bone was grafted and passive control group had nine defect sites without bone graft. After six weeks postoperatively, the rabbits were sacrificed. The defects and surrounding tissue were harvested and decalcified in 10% EDTA, 10% foamic-acid. Specimens were stained with H&E. New bone area percentage in whole defect area was measured by IMT(VT) image analysis program. Quantity of bone by $Grafton^{(R)}$ graft was smaller than that of autograft and larger than that of empty defects. In histologic view $Grafton^{(R)}$ graft site and autograft site showed similar healing progress but it was observed that newly formed bone in active control group was more mature. In empty defect, quantity and thickness of new bone formation was smaller than in $Grafton^{(R)}$-grafted defect. $Grafton^{(R)}$ is supposed to be a useful bone graft material instead of autogenous bone if proper maintenance for graft material stability and enough healing time were obtained.

A Study on the Performance of Dynamic Restraint Manipulator for Drilling Alveolar Bone in Mandible (하악골의 치조골 골삭제를 위한 동적 제약 기구부의 성능에 관한 연구)

  • Kim, Gwang-Ho;Lee, Dong-Woon;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.105-112
    • /
    • 2020
  • The increase in the edentulous jaw which occurs in the aged population has led to personal dental health concerns. In the case of dental implant surgery, the duration of a patient's recovery depends on the surgical plan and their physicical ability. A device may be required to assist a physician in controlling vibration reduction of free-hand drilling and prescribing a good treatment plan that is suitable for the patient's condition. In this work, an artificial tooth-root implant assistant manipulator was studied. The structure and the vibration analysis of the dynamic restraint manipulator that is for drilling the alveolar bone in the mandible bone were performed, and the structural stability was analyzed. Further, a virtual prototype of an artificial tooth-root implant assisted manipulator was fabricated and tested. Hence, the state of the Remote Center of Motion (RCM) point and the driving state of the manipulator were confirmed. Furthermore, the drilling experiments were performed by using materials similar to a human jawbone in order to evaluate the performance of the drilling process that is operated using the assistant manipulator.