• Title/Summary/Keyword: Artificial Spring

Search Result 184, Processing Time 0.177 seconds

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

Vibration Analysis of Partially Fluid-filled Continuous Cylindrical Shells with Intermediate Supports (유체가 부분적으로 채워진 내부지지 연속 원통셸의 진동해석)

  • 김영완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.244-252
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics for the partially fluid-filled continuous cylindrical shells with the intermediate supports. The intermediate supports are simulated by two types of artificial springs : the translational spring for the translation for each direction and the rotational spring for a rotation. The springs are continuously distributed along the circumferential direction. By allowing the spring stiffness to become very high compared to the stiffness of the structure, the rigid intermediate supports are approximated. In the theoretical procedure, the Love's thin shell theory is adopted to formulate the theoretical model. The frequency equation of the continuous cylindrical shell is derived by the Rayleigh-Ritz approach based on the energy method. Comparison and convergence studies are carried out to verify and establish the appropriate number of series term and the artificial spring stiffness to produce results with an acceptable order of accuracy. The effect of intermediate supports, their positions and fluid level on the natural frequencies and mode shapes are studied.

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

A Design of Pan-tilt Leaf Spring Structure for Artificial Eyeball (인공안구를 위한 팬틸트 구동용 판스프링 설계)

  • Kim Jung-Han;Kim Young-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.22-31
    • /
    • 2005
  • The purpose of this study is to design a flexural structure that has a function of pan and tilt for an artificial eyeball. The artificial eyeball system has a function of image stabilization, which compensate panning and tilting vibration of the body on which the artificial eyeball is attached. The target closed loop control bandwidth is 50Hz, so the mechanical resonance frequency is required to be more than the control bandwidth, which is a tough design problem because of a big mass of camera and actuator. In this study, the design process including the selection of the principal parameters by numerical analysis with ANSYS will be described, as well as the design results and frequency response.

Establishment of a Conservation Plan for Colony of Selaginella involvens (Sw.) Spring (부처손 군락지 보존계획의 수립)

  • Hong, Kwang-pyo;Kim, Inhye;LEE, Hyukjae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.449-455
    • /
    • 2022
  • The Colony of Selaginella involvens (Sw.) Spring in Sanyang-myeon, Mungyeong-si, can be divided into five types, and in the past, it was said that Selaginella involvens (Sw.) Spring formed colonies throughout the colony and grew naturally, but now it remains only in some sections. It was found that the Selaginella involvens (Sw.) Spring colony was damaged by artificial and natural factors, and as an artificial factor, the Selaginella involvens (Sw.) Spring was proven to be effective for medicinal and cremation, and many people were damaging the Selaginella involvens (Sw.) Spring colony without permission. Naturally, vines thrive and Selaginella involvens (Sw.) Spring die, and the reality is that the entire colony of Selaginella involvens (Sw.) Spring is in danger of being damaged if maintenance is not performed. On the other hand, there are sections that reproduce with symbiosis with some herbaceous plants, so it is necessary to plan and implement conservation strategies. In order to preserve the Selaginella involvens (Sw.) Spring colony, CCTV is needed to prevent artificial damage, and on the contrary, install facilities such as fences can easily burn up and create worse scenery, so it can preserve the good environment, restore recoverable areas, and install supplementary buffer zones.

Vibration Analysis of Combined Cylindrical Shells with an Annular Plate (환원판이 결합된 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.767-776
    • /
    • 2003
  • The theoretical method is developed to Investigate the nitration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural coupling between shell and plate is simulated using two types of artificial springs a translational spring is introduced for translational coupling and a rotational spring is used for rotational coupling. The springs are continuously distributed along circumferential direction. Using the Rayleigh-Ritz method the natural frequencies and mode shapes of the combined shell with an annular plate examine. The effect of Inner-to-outer radius ratio, axial position of annular plate and length-to-radius ratio of shell on vibration characteristics of combined cylindrical shells is studied. The theoretical results are verified by comparison with FEM results.

Evaluation of Exposure Times for Periphyton Biomass Estimate using Artificial Substrata in Headwater Streams (상류하천에서의 인공저층을 이용한 부착조류의 생체량 측정을 위한 노출기간 평가)

  • Kim, Hyun-Woo;Ha, Kyong;Joo, Gea-Jae
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.112-115
    • /
    • 1998
  • During the spring and fall of 1994 and winter of 1995, the exposure time of periphyton biomass on terval. In the streams with low periphyton biomass (chi. a: 2-4 mg/$m^2$) in natural rocks, biomass of arttificial substrata (unglazed tile: $3.7{\times}9.5{\times}2 cm$) exceeded that of the natural rocks after 28 days, while sites with high biomass (chi. a: 20-60 mg/$m^2$) in natural rocks showed slower biomass accumulation after 40 days. Due to the high licht input and temperature in a Partially shaded mountain stream, development of periphyton biomass in spring occurred faster than that of winter. In general, development of periphyton biomass placed on artificial substrata took 4-5 weeks in spring and at least 6 weeks In winter to reach the natural level.

  • PDF

Artificial Muscle Actuator Based on the Synthetic Elastomer

  • Chuc, Nguyen Huu;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.894-903
    • /
    • 2008
  • In this paper, we present an artificial muscle actuator producing rectilinear motion, called the Tube-Spring-Actuator(TSA). The TSA is supposed to be a prospective substitute in areas requiring macro forces such as robotics. It is simply configured from a synthetic elastomer tube with an inserted spring. The design of the TSA is described in detail and its analysis is conducted to investigate the characteristics of the actuator based on the derived model. In addition, the performance of the proposed actuator is tested via experiments.

Design of a Seismic Isolation Table for both indoor and outdoor Electrical Communication Equipment (전기통신설비를 위한 옥내외 겸용 면진테이블 설계)

  • Lee, Chun-Se;Ahn, Hyeong-Joon;Lee, Taek-Won;Son, In-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.472-472
    • /
    • 2009
  • The safety of cultural properties, medical treatment and electrical communication equipments in a building was hardly considered against the earthquake induced vibration, while the integrity of the building structure has been taken into account through the resistant earthquake design. This paper presents design of a seismic isolation table for both indoor and outdoor electrical communication equipment. First of all, artificial earthquake waves compatible with floor and ground response spectra for electrical communication equipments are generated using previously recorded seismic waves. Two kinds of one-degree-of-freedom seismic isolation table systems: spring-linear damper and spring-friction damper systems are considered and their responses to artificial earthquake waves are simulated. Design parameter study for two seismic isolation tables are performed through simulations and a seismic isolation table for both indoor and outdoor electrical communication equipment is designed considering the simulation results.

  • PDF

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.