• Title/Summary/Keyword: Artificial Rock

Search Result 307, Processing Time 0.028 seconds

A Prediction of the Plane Failure Stability Using Artificial Neural Networks (인공신경망을 이용한 평면파괴 안정성 예측)

  • Kim, Bang-Sik;Lee, Sung-Gi;Seo, Jae-Young;Kim, Kwang-Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.513-520
    • /
    • 2002
  • The stability analysis of rock slope can be predicted using a suitable field data but it cannot be predicted unless suitable field data was taken. In this study, artificial neural networks theory is applied to predict plane failure that has a few data. It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basis of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully In this study, error back-propagation algorithm that is one of the teaching techniques of artificial neural networks is applied to predict plane failure. In order to verify the applicability of this model, a total of 30 field data results are used. These data are used for training the artificial neural network model and compared between the predicted and the measured. The simulation results show the potentiality of utilizing the neural networks for effective safety factor prediction of plane failure. In conclusion, the well-trained artificial neural network model could be applied to predict the plane failure stability of rock slope.

  • PDF

Rock Mass Rating for Korean Tunnels Using Artificial Neural Network (인공신경망을 이용한 한국형 터널 암반분류)

  • 양형식;김재철
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.214-220
    • /
    • 1999
  • In this study, the validity of items of RMR system is evaluated and the applicability of this system to the data measured in Korean sites if discussed. Database was constructed from 139 sites, which are composed of subways, railway tunnels and road tunnels. These sites are located nationwide. Analysis shows that original classification of Bieniawski is valid although it was derived empirically. But it has considerable rating difference (error) in the result of Korean application. Thus new classification systems of KRMRI and KRMR2 are suggested, which are deduced from the Korean database. The former includes adjusted ratings and the latter adopts two more items. These are deduced by artificial neural network because it is difficult to select \`characteristic value'to estimate rock quality.

  • PDF

Variation of Physical and Microstructural Properties of Limestone caused by Artificial Freezing and Thawing (인공 동결-융해 풍화에 따른 석회암의 물성 및 미세구조 변화 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.435-449
    • /
    • 2015
  • Physical and microstructural properties of Pungchon and Maggol limestone were investigated quantitatively during 50 cycles of artificial freezing and thawing test. There were decrease in dry weight and P,S-wave velocity, and increase in absorption rate in both rock types. Porosity, pore volume, equivalent diameter, throat thickness and pore orientation were analyzed using X-ray computed tomography images. Porosity increased, and initiation and expansion of pores were investigated as weathering progresses. Physical and microstructural variation in Maggol limestone was larger than that of Pungchon limestone because Maggol limestone has more pores and microcracks at initial state. As this study analyzes physical and microstructural properties of rock specimens comprehensively, it can be applied to further rock weathering study and can be used as fundamental data of construction and resource development in cold regions.

A Study of Engineering Properties of Rock Mass Weathered by Sea water (해수에 의한 암반 풍화의 공학적 특성 연구)

  • Choi Kang-Il;Kang Coo-Won;Go Chin-Surk
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • This study is to clarify the comparative relationship and mechanical anisotropy of granite distributed in the Nam-weon on the subject of weathered rock mass sea water surroundings. Artificial weathering test is defined as a test, which controls the weathering rate and agents by controlling the weathering rate and agents by artificial environmental of salt water. Increased weathering degree is large indicated by weathering salt water, such as apparent specific gravity, absorption, porosity, uniaxial compression strength, P-wave velocity, slake durability, shore hardness, indirect tensile strength(brazilian test) and cohesion were measured. As the Weathering salt water proceeds, cracks develope increasingly. A number the cracks affect the rock deformation. Therefore, stress-strain curve of weathered salt water rock in one confined state are quite differ from weathered fresh water rock those. A reason of their deformation type is the formation of micro-cracks and potential porosity caused by artificial weathering test.

Accelerated Laboratory Experiments Investigating Weathering of Volcanic Rocks from Yuchon Group Exposed to Seawater and Acidified Distilled Water (실내인공풍화가속실험을 통한 해수와 산성증류수에 대한 유천층군 화산암의 풍화 특성 연구)

  • Ik Woo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • Laboratory tests of accelerated artificial weathering compared the effects of seawater and acidified distilled water on rock weathering. The experiments simulated chemical and physical weathering of five different types of volcanic rock by applying 45 freeze-thaw cycles using seawater and acidified distilled water (pH 3), both at 70℃. The physical properties and uniaxial compressive strength (UCS) of the rocks were measured after 15 and 45 cycles of artificial weathering. Most of degradation of physical properties appeared within the first 15 cycles, and acidified distilled water had a greater effect than seawater. Analysis of variance (ANOVA) statistically evaluated the differences in UCS of the different rock types during the tests. The rate of UCS reduction after 45 cycles was similar across the samples, being independent of the rock type and the trend of changes in physical properties. In contrast to the changes in the physical properties, the UCS was more affected by seawater than by acidified distilled water.

Assessment of Factors affecting Rock-Slope Failure using Artificial Neural Network (인공신경망을 활용한 암반사면 붕괴유발인자 평가)

  • Song, Young-Karb;Park, Dug-Keun;Son, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.759-763
    • /
    • 2010
  • Currently available evaluation checklists are developed for specific purposed using different parameters and items determined by different weighting factors. Those items with different weighting are sometimes said that they are based on the engineering judgement and leap of faith and, therefore, there is a limitation to adapt those checklists for slope-stability evaluation in the field. This study reviews factors affecting Rock-slope stability, analyze the relationship between those factors and slope failures using artificial neural network, and proposed a slope-stability evaluation model for adequate weighting for the factors.

  • PDF

Tunnel-Lining Back Analysis for Characterizing Seepage and Rock Motion (투수 및 암반거동 파악을 위한 터널 라이닝의 역해석)

  • Choi Joon-Woo;Lee In-Mo;Kong Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.248-255
    • /
    • 2006
  • Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels. however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results are clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the firstpart are used to prepare a set of data for learning process. Tunnel behavior especially the displacements of the lining has been exclusively investigated for the back analysis.

  • PDF

(A study failure-strength characteristics of soil layer contained Corestone) (핵석을 포함하는 토층의 파괴강도 특성연구)

  • 이수곤;금동헌
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.711-716
    • /
    • 2002
  • When judging the ground by core-logging, depth of coring might be stopped by coming into view of the moderately weathered rock and also considered as bedrock line. However, highly weathered rock may appear again, if coring more, because there are core-stones in the residual soil and highly weathered rock by the effect of hydraulic-thermal differentiation and does the irregular rock weathering or metamorphic rock region. Therefore, there are room for misunderstanding of diagnosing the moderately weathered rock. Even though the irregular ground where the corestones were come out will show clear geotechnical differences between the ground and the gradually weathered bedrock, nowadays, the construction sites do not take into account the characteristic of core-stone region. In conclusion, to study the failure-strength characteristics of soil layers containing core-stones, we made artificial core-stones and varied percentage of corestones, and measured cohesion and friction factors to adjust them to construction sites containing corestones such as slope, tunnel, and underground.

  • PDF

Roughness Mobilization Characteristics of Artificial Triangular Asperities (인공 삼각 돌출부의 거칠기 발현특성)

  • Hong, Eun-Soo;Choi, Sung-Oong;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.760-767
    • /
    • 2006
  • Underestimation of rock joint shear strength comes from an inadequate consideration of roughness mobilization behavior, which is changed by asperity size as well applied normal load. In this study, we performed rock joint shear tests, and studied the roughness mobilization characteristics related with the scale of normal stress and asperities. Test specimens with artificial triangular asperities were manufactured. The specimens consisted of 3 types, and each type represented unevenness, waviness and total roughness(superposition of unevenness and waviness). The experimental results show that the roughness mobilization characteristics are varied by the scale of normal stress and asperities. Furthermore, the investigation shows that the rate of geometrical component and mechanical component in the total roughness is also varied by the scale of normal stress and asperities. These results suggest that we should consider the roughness mobilization characteristics for the roughness quantification and the shear strength modelling.

  • PDF