• Title/Summary/Keyword: Artificial Neural Networks(ANNs)

Search Result 162, Processing Time 0.026 seconds

A Metamodeling Approach for Leader Progression Model-based Shielding Failure Rate Calculation of Transmission Lines Using Artificial Neural Networks

  • Tavakoli, Mohammad Reza Bank;Vahidi, Behrooz
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.760-768
    • /
    • 2011
  • The performance of transmission lines and its shielding design during a lightning phenomenon are quite essential in the maintenance of a reliable power supply to consumers. The leader progression model, as an advanced approach, has been recently developed to calculate the shielding failure rate (SFR) of transmission lines using geometrical data and physical behavior of upward and downward lightning leaders. However, such method is quite time consuming. In the present paper, an effective method that utilizes artificial neural networks (ANNs) to create a metamodel for calculating the SFR of a transmission line based on shielding angle and height is introduced. The results of investigations on a real case study reveal that, through proper selection of an ANN structure and good training, the ANN prediction is very close to the result of the detailed simulation, whereas the Processing time is by far lower than that of the detailed model.

A mortar mix proportion design algorithm based on artificial neural networks

  • Ji, Tao;Lin, Xu Jian
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.357-373
    • /
    • 2006
  • The concepts of four parameters of nominal water-cement ratio, equivalent water-cement ratio, average paste thickness, fly ash-binder ratio were introduced. It was verified that the four parameters and the mix proportion of mortar can be transformed each other. The behaviors (strength, workability, et al.) of mortar primarily determined by the mix proportion of mortar now depend on the four parameters. The prediction models of strength and workability of mortar were built based on artificial neural networks (ANNs). The calculation models of average paste thickness and equivalent water-cement ratio of mortar can be obtained by the reversal deduction of the two prediction models, respectively. A mortar mix proportion design algorithm was proposed. The proposed mortar mix proportion design algorithm is expected to reduce the number of trial and error, save cost, laborers and time.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

Computer Science Research Ideas Generation Using Neural Networks

  • Maghraby, Ashwag;Assaeed, Joanna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.127-130
    • /
    • 2022
  • The number of published journals, conferences, and research papers in computer science is increasing rapidly, which has led to a challenge in coming up with new and unique ideas for research. To alleviate the issue, this paper uses artificial neural networks (ANNs) to generate new computer science research ideas. It does so by using a dataset collected from IEEE published journals and conferences to train an ANN model. The results reveal that the model has a 14% success rate in generating usable ideas. The outcome of this paper has implications for helping both new and experienced researchers come up with novel research topics.

Predicting strength and strain of circular concrete cross-sections confined with FRP under axial compression by utilizing artificial neural networks

  • Yaman S. S. Al-Kamaki;Abdulhameed A. Yaseen;Mezgeen S. Ahmed;Razaq Ferhadi;Mand K. Askar
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.93-122
    • /
    • 2024
  • One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.

Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge

  • Nguyen, Duong Huong;Tran-Ngoc, H.;Bui-Tien, T.;De Roeck, Guido;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2020
  • This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can accurately identify damage level.

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

Development of IT-based tunnel design system (IT 기반의 터널 최적 설계를 위한 시스템 개발)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Yoo, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper concerns the development of a knowledge-based tunnel design system within the framework of artificial neural networks (ANNs). The system is aimed at expediting a routine tunnel design works such as determination of support patterns and stability analysis of selected support patterns. A number of sub-modules for determination of support patterns and stability assessment were developed and implemented to the system. It is shown that the ANNs trained with the results of 2D and 3D numerical analyses can be generalized with a reasonable accuracy, and that the ANN based tunnel design concept is a robust tool for tunnel design optimization. The details of the system architecture and the ANNs development are discussed in this paper.

  • PDF

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.

Symptoms - Diagnostic System using Artificial Neural Networks in a Web Environment (웹 환경에서 인공신경망을 이용한 증상 진단 시스템)

  • Kim, Sam-Geun;Kim, Byeong-Cheon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.407-414
    • /
    • 2002
  • Being recently increased interests of our healthcare, a host of symptoms-diagnostic sites has been introduced on the World Wide Web. But conventional healthcare sites provide users with only a very restricted functions. In this paper, we propose the use of Artificial Neural Networks (ANNs) as a flexible symptoms-diagnostic tool that enables learning effects of ANNs (not expert's knowledge) to be incorporated into the diagnostic process. We develop a novel algorithm for predicting patient\`s disease that satisfy user (or expert)-specified symptoms on WWW. Our algorithm provides two important benefits : 1) enables users (patients) to be taken early diagnostic, and 2) enables experts to perform confidently diagnostic by referencing the predicted diseases-list with its respective possibility.