• Title/Summary/Keyword: Artificial Model

Search Result 4,110, Processing Time 0.031 seconds

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF

Biomechanical Changes of the Lumbar Segment after Total Disc Replacement : Charite$^{(R)}$, Prodisc$^{(R)}$ and Maverick$^{(R)}$ Using Finite Element Model Study

  • Kim, Ki-Tack;Lee, Sang-Hun;Suk, Kyung-Soo;Lee, Jung-Hee;Jeong, Bi-O
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.446-453
    • /
    • 2010
  • Objective : The purpose of this study was to analyze the biomechanical effects of three different constrained types of an artificial disc on the implanted and adjacent segments in the lumbar spine using a finite element model (FEM). Methods : The created intact model was validated by comparing the flexion-extension response without pre-load with the corresponding results obtained from the published experimental studies. The validated intact lumbar model was tested after implantation of three artificial discs at L4-5. Each implanted model was subjected to a combination of 400 N follower load and 5 Nm of flexion/extension moments. ABAQUS$^{TM}$ version 6.5 (ABAQUS Inc., Providence, RI, USA) and FEMAP version 8.20 (Electronic Data Systems Corp., Plano, TX, USA) were used for meshing and analysis of geometry of the intact and implanted models. Results : Under the flexion load, the intersegmental rotation angles of all the implanted models were similar to that of the intact model, but under the extension load, the values were greater than that of the intact model. The facet contact loads of three implanted models were greater than the loads observed with the intact model. Conclusion : Under the flexion load, three types of the implanted model at the L4-5 level showed the intersegmental rotation angle similar to the one measured with the intact model. Under the extension load, all of the artificial disc implanted models demonstrated an increased extension rotational angle at the operated level (L4-5), resulting in an increase under the facet contact load when compared with the adjacent segments. The increased facet load may lead to facet degeneration.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

Development of Integrated Security Control Service Model based on Artificial Intelligence Technology (인공지능 기술기반의 통합보안관제 서비스모델 개발방안)

  • Oh, Young-Tack;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.108-116
    • /
    • 2019
  • In this paper, we propose a method to apply artificial intelligence technology efficiently to integrated security control technology. In other words, by applying machine learning learning to artificial intelligence based on big data collected in integrated security control system, cyber attacks are detected and appropriately responded. As technology develops, many large capacity Is limited to analyzing individual logs. The analysis method should also be applied to the integrated security control more quickly because it needs to correlate the logs of various heterogeneous security devices rather than one log. We have newly proposed an integrated security service model based on artificial intelligence, which analyzes and responds to these behaviors gradually evolves and matures through effective learning methods. We sought a solution to the key problems expected in the proposed model. And we developed a learning method based on normal behavior based learning model to strengthen the response ability against unidentified abnormal behavior threat. In addition, future research directions for security management that can efficiently support analysis and correspondence of security personnel through proposed security service model are suggested.

Artificial neural network model for predicting sex using dental and orthodontic measurements

  • Sandra Anic-Milosevic;Natasa Medancic;Martina Calusic-Sarac;Jelena Dumancic;Hrvoje Brkic
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.194-204
    • /
    • 2023
  • Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12-17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle's classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0-78.1% to 77.8-85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Generating Artificial Winds for Real-time Applications (실시간 응용을 위한 인위적인 바람의 생성)

  • Lee, Nam-Kyung;Baek, Nak-Hoon;Lee, Jong-Won;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.701-709
    • /
    • 2000
  • Real world wind can be classified into two categories: natural wind and artificial wind. Artificial wind can be generated by human beings, air conditioners, electric fans, etc. In this paper, a model for artificial wind is presented. We also present methods to efficiently calculate the forces applied to the objects under influence of the artificial wind. Our model is designed for real-time applications such as virtual environments. A general wind generating system can be established through integrating our model with previous wind models those are concentrated on the natural wind generation.

  • PDF

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

Understanding and Application of Multi-Task Learning in Medical Artificial Intelligence (의료 인공지능에서의 멀티 태스크 러닝의 이해와 활용)

  • Young Jae Kim;Kwang Gi Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1208-1218
    • /
    • 2022
  • In the medical field, artificial intelligence has been used in various ways with many developments. However, most artificial intelligence technologies are developed so that one model can perform only one task, which is a limitation in designing the complex reading process of doctors with artificial intelligence. Multi-task learning is an optimal way to overcome the limitations of single-task learning methods. Multi-task learning can create a model that is efficient and advantageous for generalization by simultaneously integrating various tasks into one model. This study investigated the concepts, types, and similar concepts as multi-task learning, and examined the status and future possibilities of multi-task learning in the medical research.

Study on the Prediction Model for Employment of University Graduates Using Machine Learning Classification (머신러닝 기법을 활용한 대졸 구직자 취업 예측모델에 관한 연구)

  • Lee, Dong Hun;Kim, Tae Hyung
    • The Journal of Information Systems
    • /
    • v.29 no.2
    • /
    • pp.287-306
    • /
    • 2020
  • Purpose Youth unemployment is a social problem that continues to emerge in Korea. In this study, we create a model that predicts the employment of college graduates using decision tree, random forest and artificial neural network among machine learning techniques and compare the performance between each model through prediction results. Design/methodology/approach In this study, the data processing was performed, including the acquisition of the college graduates' vocational path survey data first, then the selection of independent variables and setting up dependent variables. We use R to create decision tree, random forest, and artificial neural network models and predicted whether college graduates were employed through each model. And at the end, the performance of each model was compared and evaluated. Findings The results showed that the random forest model had the highest performance, and the artificial neural network model had a narrow difference in performance than the decision tree model. In the decision-making tree model, key nodes were selected as to whether they receive economic support from their families, major affiliates, the route of obtaining information for jobs at universities, the importance of working income when choosing jobs and the location of graduation universities. Identifying the importance of variables in the random forest model, whether they receive economic support from their families as important variables, majors, the route to obtaining job information, the degree of irritating feelings for a month, and the location of the graduating university were selected.