Objective: The purpose of this study is to analyze trends related to sports and artificial intelligence (AI) to understand the trends and how they change according to time, and to establish methods to apply AI in sports. Both macro and micro perspectives related to sports utilization of AI were analyzed. Method: In this study, after analyzing and discussing various information related to the use of artificial intelligence in the sports through a search of academic journals, papers, books, and websites published recently at nationally and internationally, the application plan of artificial intelligence in the sports field was presented. Results: 1) Motion analysis technology using artificial intelligence is effective in sports where posture is important, and if it provides systematic feedback and training methods, it can help improve performance. 2) The introduction of a sports referee judgment system using artificial intelligence is expected to improve performance by restoring factual judgment and objective fairness in sports games. 3) Artificial intelligence will provide coaching staff and players with a variety of information to help improve performance through systematic coaching and improving feedback and enhanced training methods. 4) It is judged that artificial intelligence-related to sports ethics, sports ICT, sports marketing, sports prediction, etc. We think that based on the current AI research trends will have a positive impact on all sports-related areas, helping to revitalize sports. Conclusion: Motion analysis technology using artificial intelligence, sports referee judgment system, coaching using artificial intelligence, and artificial intelligence are judged to have a positive effect on all sports-related areas and help revitalize sports.
International Journal of Computer Science & Network Security
/
제22권11호
/
pp.357-366
/
2022
Artificial intelligence (AI) is the replication of human intelligence by computer systems and machines using tools like machine learning, deep learning, expert systems, and natural language processing. AI can be applied in administrative settings to automate repetitive processes, analyze and forecast data, foster social communication skills among staff, reduce costs, and boost overall operational effectiveness. In order to understand how AI is being used for administrative duties in various organizations, this paper gives a critical dialogue on the topic and proposed a framework for using artificial intelligence in organizations. Additionally, it offers a list of specifications, attributes, and requirements that organizations planning to use AI should consider.
전장에 있는 지휘관과 참모들은 상황을 인식하고 그 결과를 바탕으로 지휘결심을 통해 군사 활동을 수행하는데, 최근 정보기술의 발달과 함께 지휘결심을 지원하는 인공지능에 대한 요구가 증가하였다. 인공지능을 활용하기 위해서는 강화학습에 필요한 학습 data set의 식별, 수집 그리고 전처리가 필수적이다. 그러나 전술 C4I 체계에 저장된 적 data는 정확성, 적시성, 충분성 측면에서 인공지능 학습 data로 사용하기에 적절하지 않기 때문에 학습 data를 수집하고 훈련 시킬 수 있는 대안이 필요하다. 본 논문에서는 육군의 워게임 훈련 모델인 '창조 21 모델 훈련 data'를 활용하여 인공지능을 학습시키는 방법론을 제시하였다. 연구 범위는 군사결심수립과정과 연계하여 인공지능의 역할과 범위를 구체화하고, 그 역할에 맞추어 인공지능을 훈련 시키기 위해 창조 21 모델 연습 data를 활용하는 모델을 제시하였다. 공개가 제한되는 군사자료의 특성을 고려하여 가상의 sample data를 제작하였고, 공개가 제한되는 대한민국 육군의 교리는 인터넷에서 수집 가능한 미군 교리를 활용하였다.
International journal of advanced smart convergence
/
제9권4호
/
pp.132-138
/
2020
Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.
Zheng-Dong Hou;Ki-Hong Kim;Gao-He Zhang;Peng-Hui Li
Journal of information and communication convergence engineering
/
제21권2호
/
pp.152-158
/
2023
In recent years, as computer-generated imagery has been applied to more industries, realistic facial animation is one of the important research topics. The current solution for realistic facial animation is to create realistic rendered 3D characters, but the 3D characters created by traditional methods are always different from the actual characters and require high cost in terms of staff and time. Deepfake technology can achieve the effect of realistic faces and replicate facial animation. The facial details and animations are automatically done by the computer after the AI model is trained, and the AI model can be reused, thus reducing the human and time costs of realistic face animation. In addition, this study summarizes the way human face information is captured and proposes a new workflow for video to image conversion and demonstrates that the new work scheme can obtain higher quality images and exchange effects by evaluating the quality of No Reference Image Quality Assessment.
One of the newest trends in AI is emotion recognition utilizing keystroke dynamics, which leverages biometric data to identify users and assess emotional states. This work offers a comparison of four datasets that are frequently used to research keystroke dynamics: BB-MAS, Buffalo, Clarkson II, and CMU. The datasets contain different types of data, both behavioral and physiological biometric data that was gathered in a range of environments, from controlled labs to real work environments. Considering the benefits and drawbacks of each dataset, paying particular attention to how well it can be used for tasks like emotion recognition and behavioral analysis. Our findings demonstrate how user attributes, task circumstances, and ambient elements affect typing behavior. This comparative analysis aims to guide future research and development of applications for emotion detection and biometrics, emphasizing the importance of collecting diverse data and the possibility of integrating keystroke dynamics with other biometric measurements.
Purposes: The purpose of this study was to empirically analyze the effect of the attitude of medical staff providing medical services on the treatment satisfaction of the patients who experienced outpatient care at the hospitals and clinics. In particular, it was verified whether the courtesy of the medical staff to the outpatients has moderated the effect of the medical staff's explanation on the treatment satisfaction. Methodology: After controlling the socio-demographic factors of the outpatients with their treatment and waiting time, multiple regression analyses were conducted to figure out the effect of the attitude of the medical staff on the treatment satisfaction. And the covariance analyses were adopted to verify the moderating effect of the variables of the medical staff. Findings: At both hospitals and clinics, all attitudes of medical staff such as the way they explain to and communicate with the patients, and their courtesy showed positive effects on treatment satisfaction. Among them, the courtesy of the medical staff was the most influential variable on the satisfaction of the treatment, and it only had the control power over the effect of the way they explain on the treatment satisfaction. Practical Implication: Among the medical staff's attitudes toward patients at hospital or clinic level, the courtesy of doctors and nurses is an important factor in improving treatment satisfaction. In particular, if the level of their courtesy is low among the medical services rendered at the clinics, the satisfaction level will decrease even if the level of explanation of the medical staff is high. Therefore, in terms of hospital management, treatment satisfaction can be improved when doctors and nurses provide medical services to visitors with polite, humble and friendly manner in explaining to and communicating with the patients.
This study deals with an AI architecture model for collecting battlefield data using the tactical C4I system. Based on this model, the artificial staff can be utilized in tactical echelon. In the current structure of the Army's tactical C4I system, Servers are operated by brigade level and above and divided into an active and a standby server. In this C4I system structure, the AI server must also be installed in each unit and must be switched when the C4I server is switched. The tactical C4I system operates a server(DB) for each unit, so data matching is partially delayed or some data is not matched in the inter-working process between servers. To solve these issues, this study presents an operation concept so that all of alternate server can be integrated based on virtualization technology, which is used as an source data for AI Meta DB. In doing so, this study can provide criteria for the AI architectural model of the ground tactical echelon.
본 논문에서는 의사결심 지원체계인 전장관리체계의 지능화를 위해 의사결심 조건에 기초한 데이터 모델링 방안을 제시하였다. 인간처럼 보고 식별도 하고, 자유롭게 움직임을 통해 원하는 위치에 도달하는 모습은 쉽게 이해되거나 실생활에서 체감하고 있는데 비해, 원하는 위치에 도달한 이후 인간 인지 행위 중 가장 중요한 하나인 의사 결심 판단을 구현했다거나 혹은 그러한 예제를 아직은 찾아 볼 수 없는 실정이다. 도착을 원했던 회의실에 인간을 대신해 에이전트가 오기는 했지만 판단을 도와주거나 대신 해주어야 할 임무인 예컨대, 가격 정책을 올릴 것인지 내릴 것인지, 지휘관이 심사숙고하고 있는 예컨대, 역습을 하는 것이 현명한지 아닌지에 대한 판단을 지원해 주지 못하고 있다. 군 지휘 통제의 현상과 현안을 고찰하였고, 각 상황에 대한 판단을 내릴 때 기계참모의 조언이 가능하게하기 위한 많은 양의 데이터 확보가 가능하도록, 현 지휘통제 체계를 변경시킬 방안으로 의사결심 조건에 기초한 데이터 모델링 방안을 제시하였다. 또한 제시한 방안에 대해 기계가 하는 의사결정의 한 예시로써 의사결정 트리 방법론을 적용하였다. 이를 통해 향후 AI 상황 판단 참모가 어떠한 모습으로 우리에게 다가올지에 대한 혜안을 제공하고자 하였다.
생성형 AI 서비스의 다각화로 다양한 분야와 연령대에서 사용됨에 따라, 교육 분야에서도 활용 시도와 논의가 활발해지고 있다. 본 연구에서는 충청북도 지역 초·중등 교직원 934명 대상의 설문 조사를 통해 생성형 AI에 대한 일반적 및 업무 영역에서의 인식과 활용도, 요구 사항을 조사·분석했다. 주요 연구 결과로, 첫째, 교직원의 생성형 AI 활용 경험은 일반적 사용 대비 업무 목적 사용 경험이 적었고, 월 1회 이상의 주기적 빈도를 고려하면 훨씬 적은 비율로 나타났다. 둘째, 생성형 AI의 업무 활용 시 업무 효율 향상에 대한 기대가 가장 높은 것으로 나타났다. 셋째, 직위와 직종에 따라 생성형 AI의 활용 방안별 유용성 인식차가 두드러졌지만, 다양한 문서 처리 도움에 대한 유용성 인식 정도가 공통으로 높은 것으로 나타났다. 초·중등 교직원의 생성형 AI 업무 활용을 위해 생성형 AI 사용 관련 부작용 및 유의점에 대한 안전장치 마련과 촉진 환경 조성 등의 사항에 대한 개선이 필요하고 직위와 직종에 따라 요구 사항과 필요성이 고려되어야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.