• Title/Summary/Keyword: Artificial Intelligence

Search Result 5,028, Processing Time 0.033 seconds

Efficient distributed consensus optimization based on patterns and groups for federated learning (연합학습을 위한 패턴 및 그룹 기반 효율적인 분산 합의 최적화)

  • Kang, Seung Ju;Chun, Ji Young;Noh, Geontae;Jeong, Ik Rae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.73-85
    • /
    • 2022
  • In the era of the 4th industrial revolution, where automation and connectivity are maximized with artificial intelligence, the importance of data collection and utilization for model update is increasing. In order to create a model using artificial intelligence technology, it is usually necessary to gather data in one place so that it can be updated, but this can infringe users' privacy. In this paper, we introduce federated learning, a distributed machine learning method that can update models in cooperation without directly sharing distributed stored data, and introduce a study to optimize distributed consensus among participants without an existing server. In addition, we propose a pattern and group-based distributed consensus optimization algorithm that uses an algorithm for generating patterns and groups based on the Kirkman Triple System, and performs parallel updates and communication. This algorithm guarantees more privacy than the existing distributed consensus optimization algorithm and reduces the communication time until the model converges.

Implementation of Point detail Classification System using Few-shot Learning (Few-shot Learning을 이용한 격점상세도 분류 시스템 구현)

  • Park, Jin-Hyouk;Kim, Yong Hyun;Lee, Kook-Bum;Lee, Jongseo;Kim, Yu-Doo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1809-1815
    • /
    • 2022
  • A digital twin is a technology that creates a virtual world identical to the real world. Problems in the real world can be identified through various simulations, so it is a trend to be applied in various industries. In order to apply the digital twin, it is necessary to analyze the drawings in which the structure of the real world to be made identical is designed. Although the technology for analyzing drawings is being studied, it is difficult to apply them because the rules or standards for drawing drawings are different for each author. Therefore, in this paper, we implement a system that analyzes and classifies the vertex detail, one of the drawings, using artificial intelligence. Through this, we intend to confirm the possibility of analyzing and classifying drawings through artificial intelligence and introduce future research directions.

A Development of Nurse Scheduling Model Based on Q-Learning Algorithm

  • JUNG, In-Chul;KIM, Yeun-Su;IM, Sae-Ran;IHM, Chun-Hwa
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, We focused the issue of creating a socially problematic nurse schedule. The nurse schedule should be prepared in consideration of three shifts, appropriate placement of experienced workers, the fairness of work assignment, and legal work standards. Because of the complex structure of the nurse schedule, which must reflect various requirements, in most hospitals, the nurse in charge writes it by hand with a lot of time and effort. This study attempted to automatically create an optimized nurse schedule based on legal labor standards and fairness. We developed an I/O Q-Learning algorithm-based model based on Python and Web Application for automatic nurse schedule. The model was trained to converge to 100 by creating an Fairness Indicator Score(FIS) that considers Labor Standards Act, Work equity, Work preference. Manual nurse schedules and this model are compared with FIS. This model showed a higher work equity index of 13.31 points, work preference index of 1.52 points, and FIS of 16.38 points. This study was able to automatically generate nurse schedule based on reinforcement Learning. In addition, as a result of creating the nurse schedule of E hospital using this model, it was possible to reduce the time required from 88 hours to 3 hours. If additional supplementation of FIS and reinforcement Learning techniques such as DQN, CNN, Monte Carlo Simulation and AlphaZero additionally utilize a more an optimized model can be developed.

Research model on stock price prediction system through real-time Macroeconomics index and stock news mining analysis (실시간 거시지표 예측과 증시뉴스 마이닝을 통한 주가 예측시스템 모델연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.31-36
    • /
    • 2021
  • As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Deep Learning for Classification of High-End Fashion Brand Sensibility (딥러닝을 통한 하이엔드 패션 브랜드 감성 학습)

  • Jang, Seyoon;Kim, Ha Youn;Lee, Yuri;Seol, Jinseok;Kim, Seongjae;Lee, Sang-goo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.1
    • /
    • pp.165-181
    • /
    • 2022
  • The fashion industry is creating innovative business models using artificial intelligence. To efficiently utilize artificial intelligence (AI), fashion data must be classified. Until now, such data have been classified focusing only on the objective properties of fashion products. Their subjective attributes, such as fashion brand sensibilities, are holistic and heuristic intuitions created by a combination of design elements. This study aims to improve the performance of collaborative filtering in the fashion industry by extracting fashion brand sensibility using computer vision technology. The image data set of fashion brand sensibility consists of high-end fashion brand photos that share sensibilities and communicate well in fashion. About 26,000 fashion photos of 11 high-end fashion brand sensibility labels have been collected from the 16FW to 21SS runway and 50 years of US Vogue magazines beginning from 1971. We use EfficientNet-B1 to establish the main architecture and fine-tune the network with ImageNet-ILSVRC. After training fashion brand sensibilities through deep learning, the proposed model achieved an F-1 score of 74% on accuracy tests. Furthermore, as a result of comparing AI machine and human experts, the proposed model is expected to be expanded to mass fashion brands.

Artificial Intelligence for Autonomous Ship: Potential Cyber Threats and Security (자율 운항 선박의 인공지능: 잠재적 사이버 위협과 보안)

  • Yoo, Ji-Woon;Jo, Yong-Hyun;Cha, Young-Kyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.447-463
    • /
    • 2022
  • Artificial Intelligence (AI) technology is a major technology that develops smart ships into autonomous ships in the marine industry. Autonomous ships recognize a situation with the information collected without human judgment which allow them to operate on their own. Existing ship systems, like control systems on land, are not designed for security against cyberattacks. As a result, there are infringements on numerous data collected inside and outside the ship and potential cyber threats to AI technology to be applied to the ship. For the safety of autonomous ships, it is necessary to focus not only on the cybersecurity of the ship system, but also on the cybersecurity of AI technology. In this paper, we analyzed potential cyber threats that could arise in AI technologies to be applied to existing ship systems and autonomous ships, and derived categories that require security risks and the security of autonomous ships. Based on the derived results, it presents future directions for cybersecurity research on autonomous ships and contributes to improving cybersecurity.

Development of Convergence Education Program for 'Understanding of Molecular Structure' using Machine Learning Educational Platform (머신러닝 교육 플랫폼 활용 '분자 구조의 이해'를 위한 융합교육 프로그램 개발)

  • Yi, Soyul;Lee, Youngjun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.961-972
    • /
    • 2021
  • In this study, an educational program was developed so that artificial intelligence could be used as a transdisciplinary convergence education with other disciplines. The main educational content is designed for 8 hours using machine learning to help students understand the molecular structure dealt with in high school chemistry. The program developed in this study calculated the I-CVI (Item Content Validity Index) value through expert review, and as a result, none of the items were rejected with a score of .80 or higher. Because the program of this study combines the content elements of the chemistry subject and the information (artificial intelligence) subject academically, it is expected that the learner will be able to increase the convergence talent literacy. In addition, since it is not required to secure a additional number of hours for this educational program, the burden on teachers may be low.

A Study on Instructional Methods based on Computational Thinking Using Modular Data Analysis Tools for AI Education in Elementary School (모듈형 데이터 분석 도구를 활용한 컴퓨팅사고력 기반의 초등학교 인공지능교육 교수학습방법 연구)

  • Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.917-925
    • /
    • 2021
  • This study aims to specify a constructivism-based instructional method using a modular data analysis tool. The value and meaning of a modular data analysis tool have been examined to be applied in the national curriculum for artificial intelligence education and the process of cultivating problem-solving ability based on computational thinking. The modular data analysis tool visually expresses the cognitive thinking process that forms the schema in equilibrating through assimilation and adjustment. Artificial intelligence education has features that embody abstract knowledge and structure the data analysis module through the represented schema as a BlackBox implemented as an algorithm. Therefore, the value of the modular data analysis tool could be examined because it has the advantage of connecting the conceptual and implicit schema.