• 제목/요약/키워드: Artificial Emotion Model

검색결과 52건 처리시간 0.018초

영상 콘텐츠의 오디오 분석을 통한 메타데이터 자동 생성 방법 (Method of Automatically Generating Metadata through Audio Analysis of Video Content)

  • 용성중;박효경;유연휘;문일영
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.557-561
    • /
    • 2021
  • 영상 콘텐츠를 사용자에게 추천하기 위해서는 메타데이터가 필수적인 요소로 자리 잡고 있다. 하지만 이러한 메타데이터는 영상 콘텐츠 제공자에 의해 수동적으로 생성되고 있다. 본 논문에서는 기존 수동으로 직접 메타데이터를 입력하는 방식에서 자동으로 메타데이터를 생성하는 방법을 연구하였다. 기존 연구에서 감정 태그를 추출하는 방법에 추가로 영화 오디오를 통한 장르와 제작국가에 대한 메타데이터 자동 생성 방법에 대해 연구를 진행하였다. 전이학습 모델인 ResNet34 인공 신경망 모델을 이용하여 오디오의 스펙트로그램으로부터 장르를 추출하고, 영화 속 화자의 음성을 음성인식을 통해 언어를 감지하였다. 이를 통해 메타데이터를 생성 인공지능을 통해 자동 생성 가능성을 확인할 수 있었다.

사용자 입력 문장에서 우울 관련 감정 탐지 (Detects depression-related emotions in user input sentences)

  • 오재동;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1759-1768
    • /
    • 2022
  • 본 논문은 AI Hub에서 제공하는 웰니스 대화 스크립트, 주제별 일상 대화 데이터세트와 Github에 공개된 챗봇 데이터세트를 활용하여 사용자의 발화에서 우울 관련 감정을 탐지하는 모델을 제안한다. 우울 관련 감정에는 우울감, 무기력을 비롯한 18가지 감정이 존재하며, 언어 모델에서 높은 성능을 보이는 KoBERT와 KoELECTRA 모델을 사용하여 감정 분류 작업을 수행한다. 모델별 성능 비교를 위해 우리는 데이터세트를 다양하게 구축하고, 좋은 성능을 보이는 모델에 대해 배치 크기와 학습률을 조정하면서 분류 결과를 비교한다. 더 나아가, 사람은 동시에 여러 감정을 느끼는 것을 반영하기 위해, 모델의 출력값이 특정 임계치보다 높은 레이블들을 모두 정답으로 선정함으로써, 다중 분류 작업을 수행한다. 이러한 과정을 통해 도출한 성능이 가장 좋은 모델을 Depression model이라 부르며, 이후 사용자 발화에 대해 우울 관련 감정을 분류할 때 해당 모델을 사용한다.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.41-51
    • /
    • 2023
  • 본 논문에서는 보행자의 걸음걸이로부터 분노 감정 검출을 위한 다중 시간 윈도 특징 추출 기술을 제안한다. 기존의 걸음걸이 기반 감정인식 기술에서는 보행자의 보폭, 한 보폭에 걸리는 시간, 보행 속력, 목과 흉부의 전방 기울기 각도(Forward Tilt Angle)를 계산하고, 전체 구간에 대해서 최솟값, 평균값, 최댓값을 계산해서 이를 특징으로 활용하였다. 하지만 이때 각 특징은 보행 전체 구간에 걸쳐 항상 균일하게 변화가 발생하는 것이 아니라, 때로는 지역적으로 변화가 발생한다. 이에 본 연구에서는 장기부터 중기 그리고 단기까지 즉, 전역적인 특징과 지역적인 특징을 모두 추출할 수 있는 다중 시간 윈도 특징 추출(Multi-Time Window Feature Extraction) 기술을 제안한다. 또한, 제안하는 특징 추출 기술을 통해 각 구간에서 추출된 특징들을 효과적으로 학습할 수 있는 앙상블 모델을 제안한다. 제안하는 앙상블 모델(Ensemble Model)은 복수의 분류기로 구성되며, 각 분류기는 서로 다른 다중 시간 윈도에서 추출된 특징으로 학습된다. 제안하는 특징 추출 기술과 앙상블 모델의 효과를 검증하기 위해 일반인에게 공개된 3차원 걸음걸이 데이터 세트를 사용하여 시험 평가를 수행했다. 그 결과, 4가지 성능 평가지표에 대해서 제안하는 앙상블 모델이 기존의 특징 추출 기술로 학습된 머신러닝(Machine Learning) 모델들과 비교하여 최고의 성능을 달성하는 것을 입증하였다.

긍정감정을 유도하기 위한 모방학습을 이용한 상호작용 시스템 프로토타입 개발 (Development of An Interactive System Prototype Using Imitation Learning to Induce Positive Emotion)

  • 오찬해;강창구
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.239-246
    • /
    • 2021
  • 컴퓨터 그래픽스 및 HCI 분야에서 캐릭터를 만들고 자연스럽게 상호작용하는 시스템에 관한 많은 연구가 있었다. 이와 같은 연구들은 사용자의 행동에 대한 반응에 중점을 두었으며, 사용자에게 긍정적 감정을 끌어내기 위한 캐릭터의 행동 연구는 여전히 어려운 문제로 남아있다. 본 논문에서는 인공지능 기술을 이용하여 가상 캐릭터의 움직임에 따른 사용자의 긍정적 감정을 끌어내기 위한 상호작용 시스템 프로토타입을 개발한다. 제안된 시스템은 표정 인식과 가상 캐릭터의 동작 생성으로 구분된다. 표정 인식을 위해 깊이 카메라를 사용하며 인식된 사용자의 표정 데이터는 동작 생성으로 전달된다. 우리는 개인화된 상호작용 시스템 개발을 위하여 학습모델로서 모방학습을 사용한다. 동작 생성에서는 최초 사용자의 표정 데이터에 따라 무작위 행동을 수행하고 지속적인 모방학습을 통하여 사용자가 긍정적 감정을 끌어낼 수 있는 행동을 학습한다.

영화와 공학의 소통 방식 (The Communication Aspect of Film and Engineering)

  • 함종호
    • 공학교육연구
    • /
    • 제18권6호
    • /
    • pp.88-97
    • /
    • 2015
  • This is paper aims to figure out the way movies and engineering have communicated and the right direction for better communication between them. Engineering no longer should be treated as playing a key role when it comes to film making. Engineering is essential in making films look real. It means that movies gain credibility from utilizing engineering, which all other types of arts also seek after. Films can be resonated better through mutual communication with engineering. The paper takes a close look at emotional aspects to figure out what the new direction of communication between movies and engineering is. People's lives shown in films and the material world that engineering represents are mingled to attain the emotional oneness between the two. This can be easily observed in Japanese movies where robots and humans have a close relationship or recent films whose theme is emotional exchange among humans and robots. This kind of contact leads us to explore newly found humans' position that was brought about in the wake of development in engineering and existential conditions that humans need to have accordingly. Artificial intelligence and neurology sectors that the engineering field is today earnestly working on are in line with it. Therefore, this article seeks to find out the meaning and value of communication between movies and engineering when establishing the fresh mankind model based on emotions and pursuit of diversity.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

자연물을 모티브로 활용한 정보디자인의 시각화 기법 (The Visual Representation Methods based on natural objects in Information Design)

  • 정현정;류시천
    • 스마트미디어저널
    • /
    • 제3권2호
    • /
    • pp.20-28
    • /
    • 2014
  • 정보디자인에서 중요하게 다루고 있는 정보의 생성, 전달, 처리하는 문제는 인류의 발전 과정과 함께 진화해오고 있다 현대에는 빅데이터 등과 같이 방대하고 복잡하며 인위적인 형태의 정보가 주류를 이루고 있으며, 이 같은 정보를 어떻게 효과적으로 디자인 할 수 있는지에 대한 관심이 증대되고 있다. 본 연구는 방대하고 복잡한 정보를 사용자가 쉽게 지각하고 인지 할 수 있도록하기 위한 방안의 하나로서 자연물을 모티브로 한 시각화 기법에 관해 탐구하였다. 예로부터 자연은 인간의 많은 조형 활동에 영향을 주고 있다. 또한 자연물은 시각적으로 최적화된 형상을 지니며 제품디자인, 건축디자인 등과 같은 다양한 디자인분야에서 디자이너가 문제를 해결하기 위한 영감과 감성을 제공한다. 본 연구는 문헌연구를 통해 자연 물을 정보디자인에서 활용하기 위한 원리로서 '자연물의 구조적 원리'와 '자연물에 대한 관찰 및 분석 원리'를 제안하였다. 또한 이러한 2가지 원리를 정보디자인의 '시각적 재현요소'와 연결시켜서 자연 물을 모티브로 한 정보디자인 연구모형을 제시하였고 사례연구를 통해 그 가능성을 탐색하였다.

코로나19로 인한 개인정서와 사회변화 인식이 엔데믹 이후 재난대처 인식에 미치는 영향에 대한 연구 (The Effects of Personal Emotion and Social Change Perception caused by COVID-19 on Disaster Response Perception after the Post-Endemic)

  • 이완택;임성현;조창익;이종석;정득
    • 산업융합연구
    • /
    • 제20권8호
    • /
    • pp.127-136
    • /
    • 2022
  • 본 연구는 코로나19 상황에서 우리나라 국민이 경험한 팬데믹의 개인정서와 사회변화 인식이 엔데믹 이후 재난대처 인식에 미치는 영향을 실증적으로 분석하기 위해 다중회귀모형을 활용하여 수행하였다. 이 연구를 위해 한국언론 진흥재단에서 실시한 「코로나19 이후 국민의 일상 변화 조사」를 사용하였고, 996명(남 508명, 여 488명)을 연구대상으로 설계하였다. 연구 결과, 코로나19 긍정정서와 사회변화 인식 요인들은 재난대처 인식에 정(+)의 영향을 미쳤으며, 공동체의식은 재난대처 인식에 부(-)의 영향을 미치는 코로나19 부정정서를 완화시켜 주는 조절효과가 있었다. 엔데믹 이후 재난대처 인식에 상대적으로 가장 많은 영향을 미치는 요인은 재난 상황시 우리나라 사회에 대한 자긍심과 안정감을 갖는 코로나19 긍정정서와 공동체의식이었다. 따라서 본 연구는 엔데믹 이후 재난 발생 상황에서 수행되는 정부의 선행 및 후속 조치 방안들이 국민에게 자긍심과 안정감을 주는 체계적인 재난대처 메뉴얼과 컨트롤 타워가 더 강력하게 요청되며, 국민에게는 재난 상황에서 개인적인 행동과 판단으로 대처하기보다는 재난을 함께 극복하려는 공동체의식이 요청됨을 시사한다.

BERT와 지식 그래프를 이용한 한국어 문맥 정보 추출 시스템 (Korean Contextual Information Extraction System using BERT and Knowledge Graph)

  • 유소엽;정옥란
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.123-131
    • /
    • 2020
  • 인공지능 기술의 비약적 발전과 함께 사람의 언어를 다루는 자연어 처리 분야 역시 활발하게 연구가 진행되고 있다. 특히 최근에는 구글에서 공개한 언어 모델인 BERT는 대량의 코퍼스를 활용해 미리 학습시킨 모델을 제공함으로써 자연어 처리의 여러 분야에서 좋은 성능을 보이고 있다. BERT에서 다국어 모델을 지원하고 있지만 한국어에 바로 적용했을 때는 한계점이 존재하기 때문에 대량의 한국어 코퍼스를 이용해 학습시킨 모델을 사용해야 한다. 또한 텍스트는 어휘, 문법적인 의미만 담고 있는 것이 아니라 전후 관계, 상황과 같은 문맥적인 의미도 담고 있다. 기존의 자연어 처리 분야에서는 어휘나 문법적인 의미를 중심으로 연구가 주로 이루어졌다. 텍스트에 내재되어 있는 문맥 정보의 정확한 파악은 맥락을 이해하는 데에 있어 중요한 역할을 한다. 단어들의 관계를 이용해 연결한 지식그래프는 컴퓨터에게 쉽게 문맥을 학습시킬 수 있는 장점이 있다. 본 논문에서는 한국어 코퍼스를 이용해 사전 학습된 BERT 모델과 지식 그래프를 이용해 한국어 문맥 정보를 추출하는 시스템을 제안하고자 한다. 텍스트에서 중요한 요소가 되는 인물, 관계, 감정, 공간, 시간 정보를 추출할 수 있는 모델을 구축하고 제안한 시스템을 실험을 통해 검증한다.

인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로 (Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support)

  • 이윤경;이인주;신민정;배서연;한소원
    • 인지과학
    • /
    • 제35권1호
    • /
    • pp.23-48
    • /
    • 2024
  • 대형언어모형(LLM)을 현실에 적용하려는 지속적인 노력에도 불구하고, 인공지능이 맥락을 이해하고 사람의 의도에 맞게 사회적 지지를 제공하는 능력은 아직 제한적이다. 본 연구에서는 LLM이 사람의 감정 상태를 추론하도록 유도하기 위해, 심리 치료 이론을 기반으로 한 공감 체인(Chain of Empathy, CoE) 프롬프트 방법을 새로 개발했다. CoE 기반 LLM은 인지-행동 치료(CBT), 변증법적 행동 치료(DBT), 인간 중심 치료(PCT) 및 현실 치료(RT)와 같은 다양한 심리 치료 방식을 참고하였으며, 각 방식의 목적에 맞게 내담자의 정신 상태를 해석하도록 설계했다. CoE 기반 추론을 유도하지 않은 조건에서는 LLM이 사회적 지지를 구하는 내담자의 글에 주로 탐색적 공감 표현(예: 개방형 질문)만을 생성했으며, 추론을 유도한 조건에서는 각 심리 치료 모형을 대표하는 정신 상태 추론 방법과 일치하는 다양한 공감 표현을 생성했다. 공감 표현 분류 과제에서 CBT 기반 CoE는 감정적 반응, 탐색, 해석 등을 가장 균형적으로 분류하였으나, DBT 및 PCT 기반 CoE는 감정적 반응 공감 표현을 더 잘 분류하였다. 추가로, 각 프롬프트 조건 별로 생성된 텍스트 데이터를 정성적으로 분석하고 정렬 정확도를 평가하였다. 본 연구의 결과는 감정 및 맥락 이해가 인간-인공지능 의사소통에 미치는 영향에 대한 함의를 제공한다. 특히 인공지능이 안전하고 공감적으로 인간과 소통하는 데 있어 추론 방식이 중요하다는 근거를 제공하며, 이러한 추론 능력을 높이는 데 심리학의 이론이 인공지능의 발전과 활용에 기여할 수 있음을 시사한다.