• 제목/요약/키워드: Articulated Manipulator

검색결과 44건 처리시간 0.023초

수중작업 로봇의 동특성 및 제어에 관한 연구 (Dynamic characteristics and control of submerged working robot manipulator)

  • 강이석;송정섭;조형석
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.488-496
    • /
    • 1991
  • Dynamic chanracterisitcs and control of a submerged working robot manipulator have been investigated for articulated type robot manipulator with three revoluted joints. A dynamic equation of the manipulator has been derived. The dynamic equation includes not only mass matrix, centrifugal and Coriolis terms and gravity terms but also added mass, buoyant force and drag force terms, which are important terms for underwater motion description. A series of simulations using computed torque method have been performed for the cases of straight and circular trajectory motion controls. The results of this study show that the dynamic characteristics of the submerged working robot manipulator are very different from that of the manipulator which works in air. The influences of added mass, buoyant force and drag force terms to the total required torques have been discussed as distribution ratios to the total required torques.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제20권3호
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

고온 환경 단조 공정자동화를 위한 6축 수직다관절 로봇의 기구학 및 동특성 해석에 관한 연구 (A Study on Kinematics and Dynamics Analysis of Vertical Articulated Robot with 6 axies for Forging Process Automation in High Temperatures Environments)

  • 조상영;김민성;구영목;원종범;강정석;한성현
    • 한국산업융합학회 논문집
    • /
    • 제19권1호
    • /
    • pp.10-17
    • /
    • 2016
  • In general, articulated robot control technology is limited to the design of robot arm control systems considering each joint of the robot joint as a simple servomechanism. This method describes the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. The changes of the parameters in the controlled system are significant enough to render conventional feedback control strategies ineffective. This basic control system enables a manipulator to perform simple positioning tasks such as in the pock and place operation. However, joint controllers are severely limited in precise tracking of fast trajectories and sustaining desirable dynamic performance for variations of payload and parameter uncertainties. In many servo control applications the linear control scheme proposes unsatisfactory, therefore, a need for nonlinear techniques that increasing. for Forging process automation.

Bezier Spline을 이용한 용접 로봇의 새로운 Weaving Motion 궤적 생성 알고리즘 (A New Planning Algorithm of Weaving Trajectory Using Bezier Spline for A Welding Robot)

  • 정원지;김대영;서영교;홍형표;홍대선
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.113-118
    • /
    • 2004
  • In this paper, we propose a new weaving trajectory algorithm for the arc welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms using Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. Through simulations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning so that it's trajectory cannot penetrate into a base metal compared to the conventional algorithm using Catmull-Rom curve.

경량화를 위한 수직 다관절로봇 매니퓰레이터의 해석 (Analysis of Aticulated Robot Manipulator to Reduce Body's Weight)

  • 최원홍;김태기;이의훈;최만수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.575-581
    • /
    • 1993
  • This paper deals with analysis of articulated robot manipulator used for Arc welding and Material handling. Compared with present robot of which weight holding capacity is 6kg, this robot shows wider and symmetric working range for it's serial type mechanism. The link length is determined to have widest working range by using optimal simulation. To reduce body's weight, small AC servo motor is adopted and driving peak torque exerted at each joint is reduced by using dynamic analysis. So it is possible to reduce body's weight by 40% compared with the same class's robot and get wider working range. And by adopting modular design concept, each axis is designed to be changed easily for user's special need and repair.

  • PDF

비선형 변환제어에 의한 3자유도 수직 다관절 로봇의 제어 (Control of a 3-DOF vertical articulated robotic system using nonlinear transformation control)

  • 양창일;백윤수
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1809-1818
    • /
    • 1997
  • Mathematical models of industrial robots or manipulators are highly nonlinear equations with nonlinear coupling between the variables of motion. As the working speed has been fast, the effects of nonlinear terms have become serious. So the control algorithm based on approximately linearized equation looses the efficiency. In order to design the control law for the nonlinear models, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory in this study. Nonlinear terms of the system are eliminated and coupled terms are decoupled by this feedback law. This method is applied to a 3-D.O.F. vertical articulated manipulator by both experiments and simulations and compared with PID control which is widely used in the industry.

과실수확(果實收穫) 로보트에 관(關)한 연구(硏究)(I) -머니퓰레이터와 제어시스템 개발- (Development of a Fruit Harvesting Robot(I) -Development of a Manipulator and its Control System-)

  • 류관희;노상하;김동우
    • Journal of Biosystems Engineering
    • /
    • 제13권2호
    • /
    • pp.9-17
    • /
    • 1988
  • This study was carried out to develop an agricultural robot for fruit harvesting. As the first step an experimental manipulator and its control system were constructed. The articulated manipulator driven by DC motors has 3 degrees-of-freedom. The manipulator has a gripper adequate for fruit harvesting and an upper arm which forms a kind of guiding channel so thai harvested fruit can pass through. Point-to-point control of joints are accomplished by a digital control system with a PID controller which consists of optical shaft encoders, power amplifiers using PWM, a microcomputer and a software. The microcomputer also computes the positions of manipulator and sequence of motions. The motion of the manipulator was to slow and rough that it would need further improvement.

  • PDF

최소시간을 고려한 다관절 로봇의 궤적계획 (Trajectory Planning of Articulated Robots with Minimum-Time Criterion)

  • 최진섭;양성모;강희용
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.122-127
    • /
    • 1996
  • The achievement of the optimal condition for the task of an industrial articulated robot used in many fields is an important problem to improve productivity. In this paper, a minimum-time trajectory for an articulated robot along the specified path is studied and simulated with a proper example. A general dynamic model of manipulator is represented as a function of path distance. Using this model, the velocity is produced as fast as possible at each point along the path. This minimum-time trajectory planning module together with the existing collision-free path planning modules is utilized to design the optimal path planning of robot in cases where obstacles present.

  • PDF

다관절 손 기구의 설계 및 제어에 관한 연구 (A study on the design and control of an articulated hand)

  • 김철우;권대갑
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.200-205
    • /
    • 1993
  • In many applications, the typical parallel-jaw end-effector of a robot arm has been remarkably satisfactory. But, it is not adequate for the applications such as complicated manipulation. In the study, a finger with 4 joints (so, having redundancy) was consturcted to investigate the characteristics of an articulated hand. Each joint was driven by one actuator, and the motor torque was transmited to each joint through a tendon-pulley system. In the context, major considerations for hardware design and the method to solve the inverse kinematics of a redundant manipulator were presented. Finally, the basic capabilities of an articulated hand were presented through experiments.

  • PDF

교육용 3축 Position제어 로봇 개발

  • 정원지;김기정;김해은;배재한;박일환;양혜선;김동한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 추계학술대회 논문요약집
    • /
    • pp.183-183
    • /
    • 2003
  • PDF