• 제목/요약/키워드: Articular cartilage injury

검색결과 26건 처리시간 0.029초

관절 연골 손상의 병태 생리 (Pathophysiology of Articular Cartilage Injury)

  • 박정호
    • 대한정형외과스포츠의학회지
    • /
    • 제4권1호
    • /
    • pp.6-11
    • /
    • 2005
  • 관절 연골 손상은 급성 손상과 만성 손상인 퇴행성 관절염으로 구분되며, 급성 손상은 연골 손상의 깊이에 따라서 미세 손상, 연골 골절, 골연골 골절의 세 종류로 구분할 수 있고 각 손상의 종류별로 서로 다른 양상의 치유 반응과 예후를 보인다. 만성 관절 연골 손상은 다양한 원인으로 인해서 발생하며 관절 연골의 전반적인 퇴행성 관절염의 형태를 보인다. 관절 연골 손상 시 초기 손상의 정도가 예후를 결정짓는데 가장 중요하고 이외에도 손상의 크기, 부위, 나이, 활동성, 비만 정도, 하지 정렬 상태등도 예후를 결정하는 중요한 요소들이다. 본 논문에서는 관절 연골 손상 시 발생하는 관절 연골 내의 병태 생리적 변화에 대하여 기술하고 비수술적인 치료 방법을 생역학적인 측면과 생물학적인 측면으로 구분하여 그 효과를 알아보고자 한다.

  • PDF

방기음의 Monosodium Iodoacetate에 의한 관절연골손상 억제효과 (Protective Effects of Banggi-eum (FangchiYin) on the Articular Cartilage Injuries Induced by Monosodium Iodoacetate in Rats)

  • 정해창;정수현;서일복
    • 한방재활의학과학회지
    • /
    • 제24권3호
    • /
    • pp.39-50
    • /
    • 2014
  • Objectives The objective of this study is to investigate the protective effects of Banggi-eum (FangchiYin) on the articular cartilage injuries in rat model of osteoarthritis. Methods Articular cartilage injury was induced by injection of monosodium iodoacetate (MIA) (0.25 mg) into both knee joint cavities of rats. Rats were divided into control group (n=8) and Banggi-eum (FangchiYin) group (n=8), which was taken extracts of Banggi-eum (FangchiYin) by orally for 20 days. At the end of the experiment (20 days after MIA injection), gross and histopathological examinations on the articular structures of knee joints were performed. Proteoglycan (PG) content in articular cartilages was analyzed by safranin O staining method. And also, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-$1{\beta}$ (IL-$1{\beta}$) contents in synovial fluid were measured by ELISA method. Results 1. Grossly, the degree of articular cartilage injury in the Banggi-eum (FangchiYin) group was alleviated compared with the control group. 2. PG content in articular cartilage of the Banggi-eum (FangchiYin) group was increased significantly compared with the control group. 3. Histopathologically, osteoarthritic score of the Banggi-eum (FangchiYin) group was decreased significantly compared with the control group. 4. TNF-${\alpha}$ and IL-$1{\beta}$ content in synovial fluid of the Banggi-eum (FangchiYin) group was increased compared with the control group. But there was no significance. Conclusions On the basis of these results, we suggest that Banggi-eum (FangchiYin) have inhibiting effects on the progression of articular cartilage injury in MIA-induced osteoarthritis model.

증미오비탕이 Monosodium Iodoacetate 유발 관절연골손상에 미치는 영향 (Effects of Jeungmiobi-tang on the Articular Cartilage Injuries Induced by Monosodium Iodoacetate in Rats)

  • 현재철;정수현
    • 대한한의학회지
    • /
    • 제41권3호
    • /
    • pp.138-150
    • /
    • 2020
  • Objectives: This study was carried out to investigate the protective effects of Jeungmiobi-tang on the articular cartilage injuries induced by monosodium iodoacetate in rats. Methods: Twenty four rats were divided into three groups. Rats of normal group (n=8) were injected with 0.1 ml physiological saline into both knee joint cavities. In the rats of control group (n=8) and Jeungmiobi-tang group (n=8), Arthritis was induced by injecting with 0.1 ml monosodium iodoacetate (5 mg/ml) into both knee joint cavities. After the experiment, Gross and histopathological examinations on the knee joint were performed. The content of proteoglycan in articular cartilage and TNF-α and IL-1β in synovial fluid were also analyzed. Results: Grossly, Injuries to the articular cartilage surface was observed weak in the Jeungmiobi-tang group compared to the control group. Proteoglycan content in the articular cartilage was significantly higher in the Jeungmiobi-tang group than in the control group. The chondrocyte score was significantly lower in the Jeungmiobi-tang group than in the control group. Conclusion: According to these results, that Jeungmiobi-tang has protective effects on the articular cartilage injuries induced by monosodium iodoacetate in rats.

흰쥐 퇴행성 관절염모델을 이용한 봉독약침의 치료효과 (Effect of Bee Venom Herb-acupuncture on the Repair of Articular Full-thickness Defect in Rat)

  • 조미애;함대현;이승기;최선미;김건호;심인섭;강성길;이혜정
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.618-622
    • /
    • 2005
  • Articular cartilage is an important target for studying the arthritic diseases. To verify the therapeutic effects of bee venom herb-acupuncture in vivo, 3${\mu}$l of diluted solution of bee venom for herb-acupuncture were injected into articular cavity once a day during 3 months after making full-thickness defects in rat articular cartilage. Histological examination and immunohistochemistry indicated that the chondrocyte-like tissue was formed during the repair process of cartilage injury, and the expression of a cartilage-specific protein, collagen type II, were significantly activated. It means that the expression of the gene encoding type I collagen was down-regulated, whereas those of collagen type II were up-regulated. Histological examination by hematoxylin-eosin staining indicated that the cells regained their original round morphology. In addition, a homogeneous distribution of articular cartilage extracellular matrices was detected around the cells. These results suggested that bee venom herb-acupuncture was very effective on the recovery of articular chondrocyte phenotype.

대영전의 Monosodium Iodoacetate 유발 관절연골손상 억제 효과 (Inhibitory Effects of Daeyeoungjeon on the Injury of Articular Cartilage Induced by Monosodium Iodoacetate in Rats)

  • 서일복;정수현;박동수
    • 한방재활의학과학회지
    • /
    • 제27권2호
    • /
    • pp.9-17
    • /
    • 2017
  • Objectives This study was aimed to evaluate the effects of Daeyoungjeon (hereinafter referred to DYJ) treatment on the injury of articular cartilage induced by monosodium iodoacetate in rats. Methods Twenty-four male rats were divided into normal, osteoarthritic control and DYJ group. Rats of normal group were injected with 0.1 ml physiological saline, rats of control and DYJ groups were injected with 0.1 ml monosodium iodoacetate (3 mg/ml) into each left and right knee joint cavities. Rats of DYJ group were administrated extracts of DYJ during 60 days per orally. At 60 days after treatment, gross lesions, area and proteoglycan contents of articular cartilage, histopathological lesions, immunohistochemistry on matrix metalloproteinases (MMP-2, MMP-3, MMP-7) were evaluated. Results Grossly, degenerative changes of articular cartilages were observed weak in DYJ group. The areas of articular cartilages were broader significantly in DYJ group. The proteoglycan contents in articular cartilages were lesser significantly in DYJ group. Histopathologically, the chondrocyte score was lesser significantly in DYJ group. MMP-3 expression in articular cartilages was observed weak in DYJ group. Conclusions From above results, DYJ treatment has inhibitory effects on the injuries of articular cartilage induced by monosodium iodoacetate in rats, and it's effects may be related with down regulation of MMP-3.

골관절염에서 줄기세포를 이용한 연골 재생의 최신 지견 (Current Update of Cartilage Regeneration Using Stem Cells in Osteoarthritis)

  • 선종근;최익선;고지욱
    • 대한정형외과학회지
    • /
    • 제54권6호
    • /
    • pp.478-489
    • /
    • 2019
  • 골관절염은 관절연골 침식의 진행을 특징적으로 보이는 질환으로 관절운동 중에 통증을 증가시키고 기계적 스트레스를 견디는 능력을 감소시켜 결과적으로 관절의 가동성과 기능을 저하시킨다. 외상 또는 퇴행성으로 인한 관절연골의 손상이 일반적 관절염의 주요 원인으로 생각되며 이러한 관절연골 손상의 재생에 관한 수많은 연구와 시도들이 현재까지 진행되어 오고 있다. 현재까지 연골 손상의 경우 미세골절술과 자가연골세포 이식술이 일반적인 수술적 치료방법으로 제시되어 왔으나 비교적 양호한 임상 결과에도 불구하고 정상 유리연골의 생성이 미흡하여 시간이 경과하면서 결과가 악화되는 등 단점이 있다. 이를 보완하기 위하여 줄기세포 기반 치료법이 개발되었다. 이 종설에서는 현재 사용되는 다양한 연골 재생 방법들의 장단점 및 결과에 대해 요약하고 특히 중간엽 줄기세포(mesenchymal stem cells) 기반 연골 재생 치료법을 논하고 나아가 이상적인 미래 연골 재생 치료법에 대해서도 고민해보고자 한다.

전방십자인대 손상의 치료 원칙 (Treatment Principles of Anterior Cruciate Ligament Injury)

  • 하권익
    • 대한관절경학회지
    • /
    • 제1권1호
    • /
    • pp.36-40
    • /
    • 1997
  • Anterior Cruciate Ligament (ACL) plays an important biomechanical role for the stability of knee joint. ACL injury often leads to injuries of articular cartilage, menisci, or other supporting structures, and subsequent development of degenerative arthritis. Controversies still exist in the best treatment modalities of ACL injuries. hut the author considers it most important to make the appropriate patient selection for operative reconstruction or nonoperative treatment. and describes the treatment principles of ACL injury, including diagnosis, patient selection and the treatment modalities for successful treatment of ACL injury.

  • PDF

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.