• 제목/요약/키워드: Arsenic contaminated soil

검색결과 168건 처리시간 0.023초

Phytoremediation Potential of Kenaf (Hibiscus cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated Soil

  • Uddin Nizam, M.;Wahid-U-Zzaman, M.;Mokhlesur Rahman, M.;Kim, Jang-Eok
    • 한국환경농학회지
    • /
    • 제35권2호
    • /
    • pp.111-120
    • /
    • 2016
  • BACKGROUND: Arsenic (As)-contaminated groundwater used for long-term irrigation has emerged as a serious problem by adding As to soils. Phytoremediation potential of fiber crops viz., kenaf (Hibiscus cannabinus L.), mesta (Hibiscus sabdariffa L.), and jute (Corchorus capsularis L.) was studied to clean up As-contaminated soil.METHODS AND RESULTS: Varieties of three fiber crops were selected in this study. Seeds of kenaf, mesta, and jute varieties were germinated in As-contaminated soil. Uptake of As by shoot was significantly higher than that by root in the contaminated soil. In As-contaminated soil, kenaf and mesta varieties accumulated more As, than did jute varieties. In the plant parts above ground, mainly the shoots, the highest As absorption was recorded in kenaf cv. HC-3, followed by kenaf cv. HC-95. Kenaf varieties produced more biomass. In terms of higher plant biomass production, and As absorption, kenaf varieties showed considerable potential to remediate As-contaminated soil.CONCLUSION: The overall As absorption and phytoremediation potentiality of plant varieties were in the order of kenaf cv. HC-3 > kenaf cv. HC-95 > mesta cv. Samu-93 > jute cv. CVE-3 > jute cv. BJC-7370. All varieties of kenaf, mesta, and jute could be considered for an appropriate green plant-based remediation technology in As-contaminated soil.

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • 제47권5호
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

안정화 처리된 비소오염토양의 용출특성 (Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment)

  • 유찬;박진철;윤성욱;백승환;이정훈;임영철;최승진;장민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

모 지역 소규모급수시설 비소검출에 따른 생물학적 노출 평가 (Biological Monitoring of Arsenic Concentrations According to Exposure to Arsenic-contaminated Ground Water)

  • 서정욱;최재원;오유진;홍영습
    • 한국환경보건학회지
    • /
    • 제46권5호
    • /
    • pp.513-524
    • /
    • 2020
  • Objective: The main purpose of this study is to evaluate the environmental and biological exposure of local residents who consumed arsenic-contaminated drinking water for less than one year. Methods: As a part of water quality inspections for small-scale water supply facilities, surveys were conducted of residents of two villages that exceeded the arsenic threshold for drinking water. The environmental impact survey consisted of surveys on water quality, soil, and crops in the surveyed area. Biological monitoring was performed by measuring the separation of arsenic species in urine and total arsenic in hair. Results: In the results of biological monitoring, the concentrations of AsIII and AsV were 0.08 and 0.16 ㎍/L, respectively. MMA and DMA were 0.87 and 36.19 ㎍/L. There was no statistically significant difference between the group who drank arsenic-removed groundwater or water from the small-scale supply facility and the group who drank tap water, purified water, or commercial bottled water. Some of the water samples exceeded the arsenic threshold for drinking water. There were no samples in the soil or rice that exceeded the acceptable threshold. Conclusion: In the case of short-term exposure to arsenic-contaminated drinking water for less than one year, there were no significant problems of concern from the evaluation of biological monitoring after arsenic was removed.

오염원에 따른 토양 입경 별 비소의 오염특성 및 생물학적 접근성 평가 (Effects of Contamination Source and Particle Size on Arsenic Speciation and Bioaccessibility in Soils)

  • 권예슬;김은정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.89-97
    • /
    • 2017
  • In this study, we evaluated effect of particle size on arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from smelting and mining. Soils were partitioned into six particle size fractions ($2000-500{\mu}m$, $500-250{\mu}m$, $250-150{\mu}m$, $150-75{\mu}m$, $75-38{\mu}m$, <$38{\mu}m$), and arsenic solid-state speciation and bioaccessibility were characterized in each particle size fraction. Arsenic solid-state speciation was characterized via sequential extraction and XRD analysis, and arsenic bioaccessibility was evaluated by SBRC (Solubility Bioaccessibility Research Consortium) method. In smelter site soil, arsenic was mainly present as arsenic bound to amorphous iron oxides. Fine particle size fractions showed higher arsenic concentration, but lower arsenic bioaccessibility. On the other hand, arsenic in mine site soil showed highest concentration in largest particle size fraction ($2000-500{\mu}m$), while higher bioaccessibility was observed in smaller particle size fractions. Arsenic in mine site soil was mainly present as arsenolite ($As_2O_3$) phase, which seemed to affect the distribution of arsenic and arsenic bioaccessibility in different particle size fractions of the mine soil.

비소로 오염된 토양에 대한 토양세척기법의 적용성 연구 (Application of Soil Washing Technology for Arsenic Contaminated Soil)

  • 황정성;최상일;장민
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제9권1호
    • /
    • pp.104-111
    • /
    • 2004
  • 비소로 오염된 토양에 대해 토양세척기법을 적용하기 위한 최적의 운전조건을 도출하고자 실험을 수행하였다. 대상시료는 강원도 N광산의 광미와 경상북도 K광산 하류의 밭 토양과 하천퇴적 토양을 선정하였다. 연속추출법 실험 결과, 비소의 총함량은 21,028$\pm$190(광미), 443$\pm$7(밭 토양), 37$\pm$3(하천퇴적 토양)mg/kg으로 존재하였으며, 결합력이 약하고 쉽게 용출 가능한 비소의 농도는 최초 4단계 연속추출에 의한 총량으로 2,284$\pm$100[광미(10.9%)], 151$\pm$5[밭 토양(34.0%)], 15$\pm$3[하천퇴적 토양(39.5%)]mg/kg으로 나타났다. 수산화나트륨을 이용한 시간에 따른 용출 실험 결과, 3가지 토양 모두 적용농도(50, 100 mM)에서 6시간 이후부터 90%이상의 비소 용출 효율을 보였으며, 세척제의 최적농도는 모든 경우에 대해 200 mM이었고 진탕비는 각각 1:10(광미)과 1:5(밭 토양, 하천퇴적 토양)가 최적 조건이었다. 수산화나트륨에 의한 연속 토양세척 실험 결과, 하천퇴적 토양과 밭 토양은 연속 토양세척에 의해 세척된 토양 내의 잔존 비소 농도가 감소함을 알 수 있었으나, 광미의 경우는 거의 큰 변화가 없었다.

광산지역 비소오염 경사 농경지 토양의 안정화 및 유실 저감을 위한 석탄광산배수슬러지의 적용성 평가 (Soil Loss Reduction and Stabilization of Arsenic Contaminated Soil in Sloped Farmland using CMDS (Coal Mine Drainage Sludge) under Rainfall Simulation)

  • 고일하;권요셉;정문호;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.18-26
    • /
    • 2021
  • Soil aggregation begins with flocculation of clay particles triggered by interfacial reactions of polyvalent cation such as Ca2+ and Fe3+, and they are also known as important elements to control the mobility of arsenic in soil environment. The objective of this study was to investigate the feasibility of CMDS (coal mine drainage sludge) for soil loss reduction and stabilization of arsenic-contaminated soil in a 37% sloped farmland under rainfall simulation. The amount of soil loss decreased by 43% when CMDS was applied, and this result was not significantly different from the case of limestone application, which yielded 46% decrease of soil loss. However, the relative amount of dispersed clay particles in the sediment CMDS-applied soil was 10% lower than that of limestone-applied soil, suggesting CMDS is more effective than limestone in inducing soil aggregation. The concentrations of bioavailable arsenic in CMDS amended soil decreased by 46%~78%, which was lower than the amount in limestone amended soil. Therefore, CMDS can be used as an effective amendment material to reduce soil loss and stabilize arsenic in sloped farmland areas.

토양세척 후 발생하는 비소오염 탈수미세토의 불용화 및 재활용 평가 (Immobilization and Recycling of Arsenic-Contaminated Fine Soil Cake Produced after Soil Washing Process)

  • 오민아;문소영;현민;채희훈;이재영
    • 한국지반신소재학회논문집
    • /
    • 제11권4호
    • /
    • pp.9-16
    • /
    • 2012
  • 비소는 음이온적인 거동을 가지고 Eh-pH의 조건에 따라 특성이 변화하여 비소로 오염된 토양을 정화하기 위한 방법이 확립되어있지 못한 실정이다. 최근 입경분리 식 토양세척을 통하여 비소를 미세토 내로 농축시켜 반출, 처리하는 방법이 많이 이용되고 있으나, 이 때 발생된 미세토는 지정폐기물로 간주, 처리되어야 한다, 따라서 본 연구에서는 토양세척 후 발생되는 탈수미세토 내 비소를 불용화하고, 이를 매립지 차수재로 재이용하는 방안을 연구하고자 한다. 비소를 불용화하기 위한 최적의 조건으로 50% 이상의 함수율과 탈수미세토의 건조중량을 기준으로 8%에 해당하는 FeS가 요구되었고 건조된 탈수미세토 10g 당 0.2ml의 $H_2O_2$가 적절한 것으로 평가되었으며, 안정적인 반응을 위하여 24시간 이상의 반응시간이 요구되었다. 또한 매립지 차수재로서의 재활용을 위한 실험에서 100% 탈수미세토 기준, 시멘트 3%와 벤토나이트 13%의 배합비로 혼합하여 28일 동안 재령한 공시체가 강도와 투수계수 값이 매립지 차수층의 법적기준을 만족하는 것으로 나타났다.

벼의 비소흡수와 축적에 미치는 볏짚퇴비의 효과 (Effect of Rice Straw Compost on Arsenic Uptake and Accumulation in Rice (Oryza sativa L.))

  • 정하일;김명숙;전상호;이태구;채미진
    • 한국초지조사료학회지
    • /
    • 제42권2호
    • /
    • pp.108-113
    • /
    • 2022
  • 본 연구는 비소오염토양에 볏짚퇴비 시용량 증대가 토양의 화학성, 벼의 생육 특성 그리고 식물체의 비소함량에 미치는 영향을 평가하였다. 비소오염토양 중 볏짚퇴비 시용량이 증가하면서 벼 생육단계(분얼기, 출수기 및 수확기) 모두에서 지상부 비소함량 및 축적량은 감소되었다. 결과적으로 비소오염토양에 볏짚퇴비의 시용에 따른 토양교질 내의 다양한 음전하가 증가되고, 이로 인하여 비소의 흡착능력이 향상됨으로써 토양에서 벼 식물체로의 흡수 및 축적량을 감소시키는 것으로 판단된다. 따라서 비소오염토양에 볏짚퇴비의 시용은 벼 지상부로의 비소흡수·축적을 감소시키는 하나의 요인이 될 수 있으며, 안전한 농산물 및 가축의 조사료 생산을 위한 벼 재배관리에 적용할 수 있을 것으로 판단된다.