Browse > Article
http://dx.doi.org/10.5338/KJEA.2016.35.2.15

Phytoremediation Potential of Kenaf (Hibiscus cannabinus L.), Mesta (Hibiscus sabdariffa L.), and Jute (Corchorus capsularis L.) in Arsenic-contaminated Soil  

Uddin Nizam, M. (Department of Agricultural Chemistry, Patuakhali Science and Technology University)
Wahid-U-Zzaman, M. (Department of Agricultural Chemistry, Bangladesh Agricultural University)
Mokhlesur Rahman, M. (Department of Agricultural Chemistry, Bangladesh Agricultural University)
Kim, Jang-Eok (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Korean Journal of Environmental Agriculture / v.35, no.2, 2016 , pp. 111-120 More about this Journal
Abstract
BACKGROUND: Arsenic (As)-contaminated groundwater used for long-term irrigation has emerged as a serious problem by adding As to soils. Phytoremediation potential of fiber crops viz., kenaf (Hibiscus cannabinus L.), mesta (Hibiscus sabdariffa L.), and jute (Corchorus capsularis L.) was studied to clean up As-contaminated soil.METHODS AND RESULTS: Varieties of three fiber crops were selected in this study. Seeds of kenaf, mesta, and jute varieties were germinated in As-contaminated soil. Uptake of As by shoot was significantly higher than that by root in the contaminated soil. In As-contaminated soil, kenaf and mesta varieties accumulated more As, than did jute varieties. In the plant parts above ground, mainly the shoots, the highest As absorption was recorded in kenaf cv. HC-3, followed by kenaf cv. HC-95. Kenaf varieties produced more biomass. In terms of higher plant biomass production, and As absorption, kenaf varieties showed considerable potential to remediate As-contaminated soil.CONCLUSION: The overall As absorption and phytoremediation potentiality of plant varieties were in the order of kenaf cv. HC-3 > kenaf cv. HC-95 > mesta cv. Samu-93 > jute cv. CVE-3 > jute cv. BJC-7370. All varieties of kenaf, mesta, and jute could be considered for an appropriate green plant-based remediation technology in As-contaminated soil.
Keywords
Arsenic; Contaminated soil; Jute (Corchorus capsularis L.); Kenaf (Hibiscus cannabinus L.); Mesta (Hibiscus sabdariffa L.); Phytoremediation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cai, Y., Georgiadis, M., & Fourqurean, J. W. (2000). Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 55(9), 1411-1422.   DOI
2 De Koe, T. (1994). Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Science of the Total Environment, 145(1-2), 103-109.   DOI
3 Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A, 38(1), 61-69.   DOI
4 Alam, M. B., & Sattar, M. A. (2000). Assessment of arsenic contamination in soils and waters in some areas of Bangladesh. Water Science and Technology, 42(7-8), 185-192.
5 Bada, B. S., & Kalejaiye, S. T. (2010). Response of kenaf (Hibiscus Cannabinus L.) grown in different soil textures and lead concentrations. Research Journal of Agriculture and Biological Sciences, 6(5), 659-664.
6 Hoffmann, T., Kutter, C., & Santamaria, J. (2004). Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Engineering in Life Sciences, 4(1), 61-65.   DOI
7 Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F. J., Barranzuela, J. L., & Vásquez, E. R. (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203(1), 83-91.   DOI
8 Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229-236.   DOI
9 Islam, M. M., & Rahman, M. M. (2008). Hand Book on Agricultural Technologies of Jute, Kenaf and Mesta Crops, p. 2, Bangladesh Jute Research Institute (BJRI). Dhaka.
10 Ho, W. M., Ang, L. H., & Lee, D. K. (2008). Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. Journal of Environmental Sciences, 20(11), 1341-1347.   DOI
11 Hossain, M. F. (2006). Arsenic contamination in Bangladesh-an overview. Agriculture, Ecosystems & Environment, 113(1), 1-16.   DOI
12 Islam, M. K. (2010). Effect of Arsenic and Chromium Toxicity on Germination and Seedling Growth of Different Jute Varieties, MS Thesis, Bangladesh Agricultural University, Bangladesh.
13 Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water, Air, and Soil Pollution, 120(1-2), 121-137.   DOI
14 Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (1996). Methods of soil analysis. Part 3-Chemical methods. Soil Science Society of America Inc.
15 Murakami, M., & Ae, N. (2009). Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Journal of Hazardous Materials, 162(2), 1185-1192.   DOI
16 Salt, D. E. (2000). Phytoextraction: present applications and future promise. Environmental science and pollution control series, pp. 729-744.
17 Singh, D., Chhonkar, P. K., & Pandey, R. N. (1999). Soil Plant Water Analysis : A Methods Manual, p. 255, Indian Agricultural Research Institute, New Delhi, India.
18 Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K., & Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 31(4), 421-430.
19 Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568.   DOI
20 Williams, P. N., Islam, M. R., Adomako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., Feldmann, J., & Meharg, A. A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environmental Science & Technology, 40(16), 4903-4908.   DOI
21 Zhu, Y. G., Sun, G. X., Lei, M., Teng, M., Liu, Y. X., Chen, N. C., Wang, L. H., Carey, A. M., Deacon, C., Raab, A., Meharg, A. A., & Williams, P. N. (2008). High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice, Environmental Science & Technology, 42(13), 5008-5013.   DOI
22 Welsch, E. P., Crock, J. G., & Sanzolone, R. (1990). Trace level determination of arsenic and selenium using continuous-flow hydride generator atomic absorption spectrophotometry (HG-AAS). Quality assurance manual for the branch of geochemistry (ed. Arbogast, B. F.), pp. 38-45, US Geological Survey, USA.
23 Ye, W. L., Khan, M. A., McGrath, S. P., & Zhao, F. J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159(12), 3739-3743.   DOI
24 Klute, A. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods (No. Ed. 2). American Society of Agronomy, Inc.. Soil Science Society American, Wisconsin, USA.
25 Islam, M. S., Wahid-Uz-Zaman, M., & Rahman, M. M. (2013). Phytoaccumulation of Arsenic from Arsenic Contaminated Soils by Eichhornia Crassipes L., Echinochloa Crusgalli L. and Monochoria Hastata L. in Bangladesh. International Journal of Environmental Protection, 3(4), 17-27.
26 Bada, B. S., & Raji, K. A. (2010). Phytoremediation potential of kenaf (Hibiscus cannabinus L.) grown in different soil textures and cadmium concentrations. African Journal of Environmental Science and Technology, 4(5) 250-255.
27 Bruce, S. L., Noller, B. N., Grigg, A. H., Mullen, B. F., Mulligan, D. R., Ritchie, P. J., Currey, N., & Ng, J. C. (2003). A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters, 137(1), 23-34.   DOI
28 Baker, R. S., Barrentine, W. L., Bowman, D. H., Hawthorne, W. L., & Pettiet, J. V. (1976). Crop response and arsenic uptake following soil incorporation of MSMA. Weed Science, 24(3), 322-326.
29 Barman, S. C., & Bhargava, S. K. (1997). Accumulation of heavy metals in soil and plants in industrially polluted fields. Ecological issues and environmental impact assessment (ed. Cheremissionff, P. N.), pp. 289-314. Gulf Publishing Company, Houston, USA.
30 Khan, M. A., Stroud, J. L., Zhu, Y. G., McGrath, S. P., & Zhao, F. J. (2010). Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environmental Science & Technology, 44(22), 8515-8521.   DOI
31 Lokhande, V. H., Srivastava, S., Patade, V. Y., Dwivedi, S., Tripathi, R. D., Nikam, T. D., & Suprasanna, P. (2011). Investigation of arsenic accumulation and tolerance potential of Sesuvium portulacastrum (L.) L. Chemosphere, 82(4), 529-534.   DOI
32 Gulz, P. A., Gupta, S. K., & Schulin, R. (2005). Arsenic accumulation of common plants from contaminated soils. Plant and Soil, 272(1-2), 337-347.   DOI
33 Gupta, P. K. (2013). Soil, Plant, Water and Fertilizer Analysis, pp. 1-368, Second ed. Agrobios Agrohouse, Jodhpur, India.
34 Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research, pp. 1-680, Second ed. John Wiley and Sons Inc., New York, USA.
35 Gonzaga, M. I., Santos, J. A., & Ma, L. Q. (2008). Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environmental Pollution, 154(2), 212-218.   DOI
36 Gupta, S., Nayek, S., Saha, R. N., & Satpati, S. (2008). Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environmental Geology, 55(4), 731-739.   DOI
37 Henke, K. R. (2009). Arsenic: Environmental Chemistry, Health Threats and Waste Treatment, pp. 1-39, John Wiley & Sons Ltd., West Sussex, UK.
38 Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., & Maathuis, F. J. (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4), 158-165.   DOI
39 Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118(3), 453-461.   DOI
40 Sultana, R., & Kobayashi, K. (2011). Potential of barnyard grass to remediate arsenic‐contaminated soil. Weed Biology and Management, 11(1), 12-17.   DOI
41 Tu, C., Ma, L. Q., & Bondada, B. (2002). Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environmental Quality, 31(5), 1671-1675.   DOI
42 Panaullah, G. M., Alam, T., Hossain, M. B., Loeppert, R. H., Lauren, J. G., Meisner, C. A., Ahmed, Z. U., & Duxbury, J. M. (2009). Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil, 317(1-2), 31-39.   DOI
43 Loeppert, R. H., & Biswas, B. K. (2002). Methods of Analysis for Soil Arsenic, Texas A & M University, College Station, USA.
44 Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579.   DOI
45 Mahimairaja, S., Bolan, N. S., Adriano, D. C., & Robinson, B. (2005). Arsenic contamination and its risk management in complex environmental settings. Advances in Agronomy, 86, 1-82.   DOI
46 Mandal, S. M., & Bhattacharyya, R. N. (2007). Heavy metal toxicity on seed germination of four pulses. International Journal of Plant Sciences, 2(2), 124-127.
47 Meera, M., & Agamuthu, P. (2012). Phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate. International Journal of Phytoremediation, 14(2), 186-199.   DOI