• 제목/요약/키워드: Arriving time difference

검색결과 21건 처리시간 0.021초

위상차를 이용한 열차 위치검지를 위한 무선장치 설계 (Design of Wireless Equipment for Position Detection of Train Using the PDOA(Phase Difference of Arriving))

  • 정락교;윤용기;조홍식;이병송;정상기;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.415-417
    • /
    • 2003
  • TOA(Time of Arrival) 및 TDOA(Time Difference of Arrival)경우 무선국의 시간동기화를 위해서 고도의 기술을 요구하고 있으며, 시간동기오차에 따른 위치검지의 정밀도가 낮아지는 문제가 있어 이를 극복하기 위하여 위상차를 이용한 새로운 열차검지기법의 제안에 따른 구현을 위하여 무선장치 설계에 대하여 기술하고자 한다. 본 시스템은 전파의 전달 속도($\lambda$)를 응용하여 기준 주파수인 1.5MHz를 송신 시스템과 수신 시스템의 기준 주파수와 비교하여 그 위상의 차이를 비교하여 지연된 시간을 구한 후 이를 거리로 환산하는 시스템으로서 무선장치와 S/W로 구분하여 구현 설계하였다.

  • PDF

위상비교와 시간차를 복합한 정밀 방향탐지 기술 (An Accurate Direction Finding Technology Using a Phase Comparison and Time Difference of Arrival)

  • 임중수
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5208-5213
    • /
    • 2011
  • 본 논문에서는 배열안테나에 도달한 전파의 위상차와 시간차를 이용하여 방향탐지 정확도가 높고 방향모호성이 없는 새로운 방향탐지 기술을 제안하였다. 21세기의 전자정보시스템에는 배열 안테나에 도달하는 신호의 위상차를 이용하는 위상차 방향탐지 방식 또는 배열안테나에 도달하는 신호도착 시간차를 이용하는 방향탐지 방식이 주로 사용되고 있다. 시간차를 이용하는 방식은 장치구성은 간단하지만 좁은 안테나 배치공간에서는 방향탐지 정확도가 나쁘고, 위상차 방식은 좁은 안테나 배치공간에서도 방향탐지 정확도는 높으나 방향모호성이 발생한다. 본 논문에서는 두 방식의 장점을 결합한 방향탐지 정확도가 높고 방향모호성이 없는 새로운 방향탐지 기술을 제안하였으며, 실제 운용환경과 유사한 잡음환경에서 방향탐지 오차를 모사하여 제안된 방식의 우수성을 입증하였다.

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na, Young-Nam;Jurng, Mun-Sub;Taebo Shim
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권3E호
    • /
    • pp.9-20
    • /
    • 1999
  • To investigate the characteristics of internal waves (IWs) and their effects on acoustic wave propagation, a series of sea experiment were performed in the east coast of Donghae city, Korea in 1997 and 1998 where the water depth varies between 130 and 140 m. Thermistor strings were deployed to measure water temperatures simultaneously at 9 depths. CW source signals with the frequencies of 250,670 and 1000 Hz were received by an array of 15 hydrophones. Through the Wavelet transform analysis, the IWs are characterized as having typical periods of 2-17 min and duration of 1-2 hours. The IWs exist in a group of periods rather than in one period. Underwater acoustic signals also show obvious energy peaks in the periods of less than 12 min. Consistency in the periods of the two physical processes implies that acoustic waves react to the IWs through some mechanisms like mode interference and travel time fluctuation. Based on the thermistor string data, mode arriving structures are analyzed. As thermocline depth varies with time, it may cause travel time difference as much as 4-10 ms between mode 1 and 2 over 10 km range. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additional spatial variation of IWs. Model simulations with all modes and simple IWs show clear responses of acoustic signals to the IWs, i.e., fluctuations of amplitude and phase.

  • PDF

Research on scheduling and optimization under uncertain conditions in panel block production line in shipbuilding

  • Wang, Chong;Mao, Puxiu;Mao, Yunsheng;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권4호
    • /
    • pp.398-408
    • /
    • 2016
  • Based on non-completely hybrid flow line scheduling of panel block in shipbuilding, several uncertain factors influencing the problem were analyzed in a real environment, and a nonlinear integer programming model was built for each sub-scheduling problem. To narrow the difference between theory and application, rolling horizon and rescheduling methods are proposed. Moreover, with respect to the uncertainty of processing time, arriving time and due time, we take the minimizing of the early and delayed delivery costs as the objective, and establish an evaluation with a global penalty function. Finally, numerical experiments and a simulation analysis were undertaken to demonstrate the effectiveness of the model and algorithm.

영농형 태양광 발전 시설 하부의 일사량 분포 모의 (Simulation of Solar Irradiance Distribution Under Agrivoltaic Facilities)

  • 정영준;이상익;이종혁;서병훈;김동수;이지민;최원
    • 한국농공학회논문집
    • /
    • 제64권2호
    • /
    • pp.1-13
    • /
    • 2022
  • Agrivoltaic facility is the composite system that the solar panel is installed above the farmland, and it enables crop and electricity production simultaneously. Solar panels of the agrivoltaic facilities can block and reduce the amount of solar irradiance arriving at the farmland, but it can help the crop growth by preventing excessive solar irradiance. Therefore, to clarify how the agrivoltaic facilities affect the crop growth, precise solar irradiance distribution under the solar panel should be modeled. In this study, PAR (photosynthetically active radiation), radiation from 400 to 700 nm, which crops usually use to grow, was extracted from the total irradiance and its distribution model under various conditions was developed. Monthly irradiance distributions varied because the elevation of the sun was changed over time, which made the position changed that the local maximum and minimum irradiance appear. The higher panel height did not cause any significant difference in the amount of irradiance reaching below the solar panel, but its distribution became more uniform. Furthermore, the panel angles with the most irradiance arriving below the solar panel were different by month, but its difference was up to 2%p between the irradiance with 30° angle which is usually recommended in Korea. Finally, the interval between panels was adjusted; when the ratio of the length of the panel to the empty space was 1:2, the irradiance of 0.719 times was reached compared to when there was no panel, 0.579 times for 1:1 and 0.442 times for 2:1.

목재 섬유판의 음향방출 위치표정과 재료 특성 평가 (Acoustic Emission Source Location and Material Characterization Evaluation of Fiberboards)

  • 노승남;박익근;서성원;김용권
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.96-102
    • /
    • 2005
  • Acoustic Emission(AE) technique has been applied to not only material characterization evaluation but also on-line monitoring of the structural integrity. The AE source location technique is very important to identify the source, such as crack, leak detection. Since the AE waveforms obtained from sensors are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analysis of the transient wave-form. In this study, we have divided the region of interest into a set finite elements, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. A new technique for the source location of acoustic emission in fiberboard plates has been studied by introducing Wavelet Transform(WT) do-noising technique. WT is a powerful tool for processing transient signals with temporally varying spectra. If the WT de-noising was employed, we could successfully filter out the errors of source location in fiberboard plates by arrival time difference method. The accuracy of source location appeared to be significantly improved.

Gamma-Ray Burst Observation by SNIPE mission

  • Lee, Jae-Jin;Kim, Hong Joo;Nam, Uk-Won;Park, Won-Kee;Shon, Jongdae;Kim, Soon-Wook;Kim, Jeong-Sook;Kang, Yong-Woo;Uhm, Z. Lucas;Kang, Sinchul;Im, Sang Hyeok;Kim, Sunghwan
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.39.3-40
    • /
    • 2020
  • For the space weather research, KASI (Korea Astronomy and Space Science Institute) is developing the SNIPE (Small-scale magNetospheric and Ionospheric Plasma Experiment) mission, which consists of four 6U CubeSats of ~10 kg. Besides of space weather research, the SNIPE mission has another astrophysical objective, detecting Gamma-Ray Bursts(GRB). By cross-correlating the light curves of the detected GRBs, the fleet shall be able to determine the time difference of the arriving signal between the satellites and thus determine the position of bright short bursts with an accuracy ~100'. To demonstrate the technology of the GRB observation, CSI gamma-ray detectors combined with GPS and IRIDIUM communication modules are placed on each SNIPE CubeSat. The time of each spacecraft is synchronized and when the GRB is detected, the light curve will be transferred to the Mission Operation Center (MOC) by IRIDIUM communication module. By measuring time difference of each GRB signals, the technology for localization of GRB will be proved. If the results show some possibilities, we can challenge the new astrophysical mission for investigating the origin of GRB.

  • PDF

위상차(PDOA)를 이용한 열차 위치검지의 H/W 설계 (A Design H/W for Position Detection of Train Using the PDOA (Phase Difference of Arriving))

  • 정락교;윤용기;조홍식;이병송;정상기;김영석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.173-176
    • /
    • 2003
  • TOA(Time of Arrival) 및 TDOA(Time Difference of Arrival)경우 무선국의 시간동기화를 위해서 고도의 기술을 요구하고 있으며, 시간동기오차에 따른 위치검지의 정밀도가 낮아지는 문제가 있어 이를 극복하기 위하여 위상차(PDOA)를 이용한 새로운 열차검지기법의 제안에 따른 구현을 위하여 H/W의 설계에 대하여 기술하고자 한다 본 시스템은 전과의 전달 속도($\lambda$)를 응용하여 기준 주파수인 1.5MHz를 송신 시스템과 수신 시스템의 기준 주파수와 비교하여 그 위상의 차이를 비교하여 지연된 시간을 구한 후 이를 거리로 환산하는 시스템으로서 H/W와 S/W로 구분하여 구현 $\cdot$ 설계되는데 본 논문에서는 H/W설계에 대하여 기숙하였다.

  • PDF

Microphone Array를 이용한 고압설비의 고장위치인식 알고리즘 (An Accidental Position Detection Algorithm for High-Pressure Equipment using Microphone Array)

  • 김득권;한순신;하현욱;이장명
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2300-2307
    • /
    • 2008
  • This study receives the noise transmitted in a constant audio frequency range through a microphone array in which the noise(like grease in a pan) occurs on the power supply line due to the troublesome partial discharge(arc). Then by going through a series of signal processing of removing noise, this study measures the distance and direction up to the noise caused by the troublesome partial discharge(arc) and monitors the result by displaying in the analog and digital method. After these, it determines the state of each size and judges the distance and direction of problematic part. When the signal sound transmitted by the signal source of bad insulator is received on each microphone, the signal comes only in the frequency range of 20 kHz by passing through the circuit of amplification and 6th low pass filter. Then, this signal is entered in a digital value of digital signal processing(TMS320F2812) through the 16-bit A/D conversion. By doing so, the sound distance, direction and coordinate of bad insulator can be detected by realizing the correlation method of detecting the arriving time difference occurring on each microphone and the algorithm of detecting maximum time difference.

웨이블렛 변환을 이용한 HVDC 케이블 고장점 표정 알고리즘 (A Fault Location Algorithm Using Wavelet Transformation for HVDC Cables)

  • 권영진;강상희
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1311-1317
    • /
    • 2008
  • In this paper, a fault location algorithm using wavelet transform is proposed for HVDC cable lines. The arriving instants of the first and second fault-induced backward travelling waves can be detected by using wavelet transform. The fault distance is estimated by using the time difference between the two instants of backward travelling waves and the velocity of the travelling wave. To distinguish between the backward wave from fault point and the backward wave from the remote end, polarities of backward waves are used. The proposed algorithm is verified varying with fault distances and fault resistances in underground cables of VSC(voltage source converter) HVDC system and CSC(Current Source Converter) HVDC respectively. Performance evaluations of the proposed algorithm shows that it has good ability for a fault location of HVDC cable faults.