• Title/Summary/Keyword: Arrhenius energy activation

Search Result 278, Processing Time 0.023 seconds

Using Modeling to Predict Alaska Pollack Quality during Storage (명태의 보관시간에 따른 품질 예측 모델링)

  • Shim, Soo-Dong;Kim, Dae-Uk;An, Soo-Rim;Lee, Da-Sun;Kim, Seon-Bong;Hong, Kwang-Won;Lee, Yang-Bong;Lee, Seung-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.3
    • /
    • pp.195-204
    • /
    • 2010
  • Several quality parameters affecting Alaska pollack, Theragra chalcogramma, were measured and modeled kinetically under storage at different temperatures: the K-value, trimethylamine (TMA), volatile basic nitrogen (VBN), Torry meter, pH, acid value (AV), total viable cell count (TVC), and colony forming units (CFU) of Pseudomonas spp. The off-flavor development time (ODT) was also measured using the R-index sensory test and modeled kinetically. Among the quality parameters, the CFU of Pseudomonas spp. was an indicator of the ODT according to a similarity in the Arrhenius temperature dependence, which was derived as a criterion mathematically. The temperature dependence was represented by the Arrhenius's activation energy ($E_a$). On comparing the $E_a$ of the quality factors and the ODT, the similarity in the temperature dependence was found to be high in the order Pseudomonas spp., pH, VBN, TVC, K-value, TMA, AV, and Torry meter. Therefore, Pseudomonas spp. was identified as the primary indicator of ODT.

Flow Properties of Red Flower Cabbage Pigment Solutions (꽃양배추 색소 추출액의 유동특성)

  • Rhim, Jong-Whan;Lee, Jung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.221-225
    • /
    • 2001
  • Flow properties of red flower cabbage pigment solutions were determined over a wide range of temperatures ($20-50^{\circ}C$) and soluble solid concentrations (1-65%) using a cone and plate rotational viscometer. Flow properties of the pigment solutions were adequately described by the simple power law model. Within the tested ranges of concentration, temperature and shear rate, the flow behavior index (n) and the consistency index (K) of the solutions were in the ranges of 0.841-0.998 and $0.008-31.525\;Pa{\cdot}s^n$, respectively. The effect of temperature on the apparent viscosity of the solutions followed an Arrhenius type relationship. Activation energy of flow varied from 9.36 to 52.48 kJ/mol depending on the solid concentration and shear rate. The combined effect of temperature and concentration on the apparent viscosity at the shear rate of $100\;s^{-1}$ could be represented by a single equation as ${\ln}\;{\eta}_a\;=\;6.11\;-\;3103.94(1/T)\;-\;0.03C$.

  • PDF

Prediction of Ascorbic Acid Stability in Powdered Beverage (분말음료의 아스콜빈산 안정성 예측)

  • Lee, Young-Chun;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.330-335
    • /
    • 1982
  • A powdered beverage with afruit flavor was stored at 4, 21, 35 and $45^{\circ}C$ for 180 days to study ascerbic acid destruction at the selected temperatures. Degradation of ascorbic acid in the model followed the first order reaction, and the temperature dependence of reaction rate constants at tested temperatures was accounted for by the Arrhenius equqtion. The calculated activation energy for the destruction of ascorbic acid was 3.3 Kcal/mole. The relationship between ascorbic acid content and sensory flavor score of the beverage indicated that samples with destruction of ascorbic acid over 25% showed objectionable flavor. An attempt was made to predict the quality of powdered beverage by using a simulation model. A comparision between ascorbic acid values from shelflife tests and the simulation program showed a good agreement within acceptable error. This result demonstrated that quality of powdered beverage could be predicted by using a computer simulation model with a desired accuracy.

  • PDF

Separation Characteristics of $CH_4-CO_2$ Gas Mixture through Hollow Fiber Membrane Module (Hollow Fiber 막모듈을 이용한 $CH_4-CO_2$ 혼합기체의 분리특성)

  • Kim, Jin-Soo;Ahn, June-Shu;Lee, Sung-Moo
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 1994
  • In this study, permeation characteristics of pure $CH_4,\;CO_2$ and $CH_4/CO_2$ gas mixture were examined by permeation experiments through hollow fiber membrane module and experimental results were compared with simulation results. Permeation rate of pure gas increased with increaseing temperature in Arrhenius type. Activation energy was 6.61 kJ/mol for $CO_2$ and 25.26 kJ/mol for $CH_4$. In the permeation experiment of gas mixture, permeate flow rate and $CO_2$ concentration in permeate decreased and $CH_4$ concentration in reject increased with the increase of cut. Separation factor was in the range of 20~40 at 5~20 atm and 20% cut and it increased with pressure and against temperature Experimental values corresponded to numerical values with the deviation of 8% in permeate flow rate and $CO_2$ concentration in permeate and 15% in $CO_2$ concentration in reject.

  • PDF

Studies on Physicochemical Properties of Erythritol, Substitude Sugar (대체감미료 에리스리톨의 이화학적인 성질에 관한 연구)

  • Byun, Sang-Hee;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1089-1093
    • /
    • 1997
  • The physicochemical properties of erythritol were examined by measuring water absorption, solubility, water activity, heat stability, and viscosity compared to those of sucrose, xylitol, sorbitol and fructo-oligosaccharide. Erythritol showed the lowest water absorption and the highest water activity reducing capacity. In the solubility test of sweeteners, the saturation concentration of erythritol at $20^{\circ}C$ was 35.8%, which was the lowest solubility. Caramelization test and Maillard reaction test showed that erythritol was stabler than sucrose in heat treatment, while fructo-oligosaccharide showed the strongest reaction. The viscosity of erythritol was similar to that of other sweeteners at the same concentration (10%, 30% w/w). The viscosity of sweeteners increased exponentially with increasing concentration but decreased with increasing temperature following Arrhenius equation. The activation energy for flow of 30% erythritol solution was estimated to be 10.8 kcal/g mol.

  • PDF

Post-cure Condition of a Silicone Rubber Material for a LCD Lamp Holder (LCD 램프홀더용 실리콘고무재료의 후가교 조건)

  • Ahn, Won-Sool;Lee, Joon-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1661-1667
    • /
    • 2009
  • Post-cure characteristics of a silicone rubber material which is widely used for a LCD lamp holder were investigated using thermogravimetric analysis (TGA). Research was especially focussed on searching for the optimum post-cure conditions in relation to the practical operation environments. The results showed that incipient volatile temperature(Ti) during the process was considered as the most important factor and, thereby, post-curing for 2hrs at $250^{\circ}C$seemed to be a reasonable condition in the practical view-point. Arrhenius plot of shift factors which were empirically determined from the time-temperature-superposition-principle showed good linearity, exhibiting the post-cure mechanism might be proceeded through single mechanism with activation energy of 108.25kJ/mol.

Graft Polymerization of Methyl Methacrylate onto Cotton Fiber -Comparison of two step graft polymerization and emulsion graft polymerization- (면섬유에 Methyl Methacrylate의 그라프트중합 - 이단계 그라프트중합과 유화 그라프트중합의 비교 -)

  • Bae Hyun-Sook;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.1 s.29
    • /
    • pp.89-97
    • /
    • 1989
  • Graft polymerization of MMA onto cotton fiber was carried out in two ways, two step graft polymerization and one step emulsion graft polymerization, using tetravalent cerium ion as an initiator. At two step graft polymerization, the first step was the pretreatment of cotton fiber with an aqueous initiator solution and the second was the grafting pretreated cotton fiber in the monomer solution. In case of one step emulsion graft polymerization, MMA was emulsified with SLS in initiator solution. Under the various graft polymerization conditions, graft yield, graft efficiency and from the Arrhenius plot the apparent activation energy were compared. The results of this study were as follows: 1. Graft yield and graft efficiency of emulsion graft polymerization were higher than those of two step graft polymerization. 2. In case of two step graft polymerization, graft yield was affected by the pretreatment time of cotton fiber with an aqueous initiator solution. And graft yield of emulsion graft polymerization was increased with the concentration of emulsifier below cmc of SLS and was decreased thereafter. 3. Elevation of temperature resulted increase in graft yield for both grafting methods. The apparent activation energy of emulsion graft pelymerzation was lower than that of two step graft polymerization. 4. Increased reaction time increased in graft yield, but decreased in graft efficiency. 5. Moisture regain of grafted cotton was decreased with graft yield.

  • PDF

Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes (Lithium disilicate 유리의 입자크기에 따른 결정화 기구)

  • Choi, Hyun Woo;Yoon, Hae Won;Yang, Yong Suk;Yoon, Su Jong
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • We have investigated the crystallization mechanism of the lithium disilicate ($Li_2O-2SiO_2$, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under $45{\mu}m$, $75{\sim}106{\mu}m$, and $125{\sim}150{\mu}m$, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.

Chemical Composition and Rheological Properties of Enzymatic Hydrolysate of Porphyran Isolated from Pyropia yezoensis (김(Pyropia yezoensis)에서 분리한 포피란 효소가수분해물의 화학적 및 유동 특성)

  • In, Seo-Kyoung;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • The chemical and rheological properties of natural and enzymatically hydrolyzed porphyran isolated from Pyropia yezoensis were investigated. The enzymatic hydrolysate was prepared by hydrolysis of porphyran using ${\beta}$-agarase followed by fractionation based on molecular weight (>300 kDa (Fr-1), 100-300 kDa (Fr-2), 10-100 kDa (Fr-3) and 1-10 kDa (Fr-4) using an ultrafiltration membrane. Each hydrolysate fraction consisted mainly of galactose (42.7-57.5%), 3,6-anhydro galactose (6.5-15.1%) and ester sulfate (8.6-14.1%). The sulfate content of the enzymatically hydrolyzed fractions decreased with an increase in molecular weight, whereas the 3,6-anhydro galactose content increased significantly. The rheological behavior of porphyran and enzymatically hydrolyzed porphyran solutions demonstrated a pseudoplastic behavior, which agrees with the Herschel-Bulkley model. The effect of temperature on the viscosity of the porphyrans and hydolysate fractions were measured and modeled using the Arrhenius equation. The activation energy of the porphyrans and enzymatically hydrolyzed porphyran (Fr-1) increased from 12.30 to 20.29 kJ/mol and 9.06 to 23.84 kJ/mol, respectively with increasing concentrations from 3% to 7%. These data indicate that the extent of the apparent viscosity of porphyran and enzymatically hydrolyzed porphyran are influenced by both temperature and concentration.

Prediction of Shelf-life of Instant Noodle by Hexanal Content (헥사날에 의한 라면의 저장성 예측)

  • Kim, Bok-Soon;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.331-335
    • /
    • 1994
  • The shelf-life of instant noodle stored at $35{\sim}65^{\circ}C$ under dark condition was estimated from the change of hexanal content, which was linearly increased as the storage time increased. The rate constants of hexanal production at various storage temperatures followed Arrhenius relationship. The activation energy and $Q_{10}$ calculated were 12.7 kcal/mole and 1.92, respectively. The rancid flavor was organoleptically detected after 6 days at $65^{\circ}C$ and 13 days $50^{\circ}C$, at which the content of hexanal was 3.5 ppm. The shelf-life of instant noddle at $21^{\circ}C$ based on $Q_{10}$ value of hexanal production was about 110 days. The changes of acid value and peroxide value of instant noodle during storage followed similar pattern to those of hexanal. The activation energy and $Q_{10}$ for both acid value and peroxide value were 16.0 kcal/mole and 2.55, respectively. The hexanal content showed a high positive correlation with acid value as well as peroxide value at all storage temperatures.

  • PDF