Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.1.54

Crystallization Mechanism of Lithium Dislicate Glass with Various Particle Sizes  

Choi, Hyun Woo (Department of Nano Fusion Technology, Pusan National University)
Yoon, Hae Won (Department of Nano Fusion Technology, Pusan National University)
Yang, Yong Suk (Department of Nano Fusion Technology, Pusan National University)
Yoon, Su Jong (Department of Nano Fusion Technology, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.26, no.1, 2016 , pp. 54-60 More about this Journal
Abstract
We have investigated the crystallization mechanism of the lithium disilicate ($Li_2O-2SiO_2$, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson-Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under $45{\mu}m$, $75{\sim}106{\mu}m$, and $125{\sim}150{\mu}m$, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.
Keywords
$Li_2O-2SiO_2$ glass; phase transition; crystallization mechanism; activation energy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Kawamoto and S. Abe, Phys. Rev. B, 68, 235112 (2003).   DOI
2 G. Sarre, P. Blanchard and M. Broussely, J. Power Sources, 127, 65 (2004).   DOI
3 T. Fuss, C. S. Ray, N. Kitamura, M. Makihara, and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003).   DOI
4 H. W. Yoon, C. H. Song, Y. S. Yang and S. J. Yoon, Korean J. Mater. Res., 22, 61 (2012).   DOI
5 P. Hautojarvi, A. Vehanen, V. Komppa and E. Pajanne, J. Non-Cryst. Solids, 29, 365 (1978).   DOI
6 H. R. Fernandes, D. U. Tulyaganov, I. K. Goel and M. F. Ferreira, J. Am. Ceram. Soc., 91, 11 (2008).
7 S. Furusawa, T. Kasahara and A. Kamiyama, Solid State Ionics, 180, 649 (2009).   DOI
8 J. Du and L. R. Corrales, J. Chem. Phys., 125, 114702 (2006).   DOI
9 I. Gutzow, B. Durschang and C. Russel, J. Mater. Sci. 32, 5389 (1997).   DOI
10 S. Buchner, P. Soares, A. S. Pereira, E. B. Ferreira, and N. M. Balzaretti, J. Non-Cryst. Solids, 356, 3004 (2010).   DOI
11 N. Mizouchi and A. Cooper Jr., J. Am. Ceram. Soc., 56, 320 (1973).   DOI
12 X. J. Xu, C. S. Ray, and D. E. Day, J. Am. Ceram. Soc., 74, 909 (1991).   DOI
13 T. Fuss, C. S. Ray, N. Kitamura, M. Makihara and D. E. Day, J. Non-Cryst. Solids, 318, 157 (2003).   DOI
14 M. Avrami, J. Chem. Phys., 9, 177 (1941).   DOI
15 H. E. Kissinger, J. Res. Nat. Bur. Stand., 57, 217 (1956).   DOI
16 D. W. Henderson, J. Non-Cryst. Solids, 30, 301 (1979).   DOI
17 K. Matusita, T. Komatsu and R. Yokota, J. Mat. Sci., 19, 291 (1984).   DOI
18 H. W. Choi, Y. H. Kim, Y. H. Rim and Y. S. Yang, Phys. Chem. Chem. Phys., 15, 9940 (2013).   DOI
19 J. W. Christian, The theory of transformations in metals and alloys, 2nd Part 1 (Pergamon Press, NY, 1975).
20 S. J. Kim, J. E. Kim, Y. H. Rim and Y. S. Yang, Solid State Commun., 131, 129 (2004).   DOI
21 H. W. Choi and Y. S. Yang, J. Them. Anal. Calorim., 119, 2171 (2015).   DOI
22 S. J. Kim, J. E. Kim, H. W. Choi, Y. H. Rim and Y. S. Yang, Mat. Sci. Eng. B, 113, 149 (2004).   DOI
23 H. W. Choi, Y. H. Rim and Y. S. Yang, J. Korean Phys. Soc., 63, 2376 (2013).   DOI