• Title/Summary/Keyword: Array sensor

Search Result 872, Processing Time 0.022 seconds

Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone (맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

3-Dimensional Sensor Array Shape Calibration in Near Field Environment (근거리 환경에서의 3차원 배열센서 형상 보정 기법)

  • Ryu, Chang-Soo;Eoh, Soo-Hae;Kang, Hyun-Koo;Rhyoo, Sang-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.361-366
    • /
    • 2003
  • Most sensor array signal processing methods for multiple source localization require knowledge of the correct shape of array(the correct positions of sensors that consist array), because sensor position uncertainty can severely degrade the performance of array signal processing. In particular, it is assumed that the correct positions of the sensors are known, but the known positions may not represent the true sensor positions. Various algorithms have been proposed for 2-D sensor array shape calibration in far field environment. However, they are not available in near field. In this paper, 3-D sensor array shape calibration algorithm is proposed, which is available in near field.

  • PDF

Thermal Analysis of Gas Sensor Array (가스센서 어레이 열해석)

  • 정완영;임준우;이덕동
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.21-24
    • /
    • 2002
  • A sensor array (35mm'! in diaphragm dimension) of 12 sensing elements with different operating temperatures was optimized with respect to thermal operation. This sensor array with single heater on a glass diaphragm over back-etched silicon bulk realizes a novel concept of a sensor array: an way of sensor elements operated at different temperatures can yield more information than single measurement. The proposed micro sensor array could provide well-integrated way structure because it has only single heater at the center of the diaphragm and used the various sensing properties of two kinds of metal oxide layers with various operating temperatures.

  • PDF

Iterative Polynomial Fitting Technique Using Polynomial Coefficients for the Nonlinear Line Array Shape Estimation (비선형 선배열 형상 추정을 위한 계수 반복 다항 근사화 기법)

  • Cho, Chom Gun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.20-25
    • /
    • 2006
  • Low frequency towed line array with high array gain and beam resolution is a long range surveillance sensor for anti-submarine warfare. The beam characteristics is however deteriorated due to the distorted line array sensor caused by low towing speed, wind, current, and towing ship maneuvering. An adaptive beamforming method is utilized in this paper to enhance the distorted line array beam performance by estimating and compensating the nonlinear array shape. A polynomial curve fitting in the least square sense is used to estimate the array shape iteratively with the distributed heading sensors data along the array. Real time array shape estimation and nonlinear array beam calculation is applied to a very long towed line array sensor system and the beam performance is evaluated and compared to the linear beamformer for the simulation and sea trial data.

Thermal Analysis of Highly Integrated Gas Sensor Array with Advanced Thermal Stability Properties (안정성이 개선된 고집적 가스센서 어레이 열해석)

  • 정완영;임준우;이덕동
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.17-23
    • /
    • 2003
  • A sensor array (3${\times}$5$\textrm{mm}^2$ in diaphragm dimension) of 12 sensing clements with different operating temperatures was optimized with respect to thermal operation. This sensor array with single heater on a glass diaphragm over back-etched silicon bulk realizes a novel concept of a sensor array: an array of sensor clements operated at different temperatures can yield more information than single measurement. The proposed micro sensor array could provide well-integrated array structure because it had only single heater at the center of the diaphragm and used the various sensing properties of two kinds of metal oxide layers with various operating temperatures.

Optimal Design and Analysis of a Medical Imaging Ultrasonic Array Sensor (의료 영상진단용 초음파 어레이 센서의 최적설계 및 특성해석)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.263-270
    • /
    • 2008
  • The performance of an ultrasonic array sensor is determined by the properties of constituent materials and the effects of many structural parameters. In this study, with the finite element method, variation of the performances of an ultrasonic array sensor was analyzed in relation to its structural variables. Based on the analysis result, the structure of the ultrasonic array sensor was optimized to provide the highest sensitivity while satisfying such requirements as fractional bandwidth, center frequency and -20 dB pulse length. The optimization was carried out with the SQP-PD method for a target function composed of the ultrasonic array sensor performance. The optimized ultrasonic array sensor satisfied all the required specifications to be applicable to medical imaging diagnosis. The design technology in this paper can be utilized for other ultrasonic array sensors of a similar structure.

A Study on the Application of Gas Sensor Array to Smart Phone (가스 센서 어레이의 스마트 폰 응용에 관한 연구)

  • Lee, Hyun-Beom;Lee, Min-Chul;Joo, Weon-Yong;Lee, Seong-Choon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Gas sensor array can be widely applied to atmosphere environment, quality control of food, and medical fields etc. So for the commercialization and popularization of sensor technology, this paper looked into the method to provide users with general purpose smart phone and gas sensor array linked together. The reviewed system can detect unknown gas in the air and inform users using smart phone by arraying 8 kinds of common use gas sensor. This system is composed of the sensor module, communication module between sensor array and smart phone application software. In this paper, this prototype system demonstrate convincingly that the application of Gas sensor array to smart phone is a good outlook.

  • PDF

A Step-wise Elimination Method Based on Euclidean Distance for Performance Optimization Regarding to Chemical Sensor Array (유클리디언 거리 기반의 단계적 소거 방법을 통한 화학센서 어레이 성능 최적화)

  • Lim, Hea-Jin;Choi, Jang-Sik;Jeon, Jin-Young;Byu, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.258-263
    • /
    • 2015
  • In order to prevent drink-driving by detecting concentration of alcohol from driver's exhale breath, twenty chemical sensors fabricated. The one of purposes for sensor array which consists of those sensors is to discriminate between target gas(alcohol) and interference gases($CH_3CH_2OH$, CO, NOx, Toluene, and Xylene). Wilks's lambda was presented to achieve above purpose and optimal sensors were selected using the method. In this paper, step-wise sensor elimination based on Euclidean distance was investigated for selecting optimal sensors and compared with a result of Wilks's lambda method. The selectivity and sensitivity of sensor array were used for comparing performance of sensor array as a result of two methods. The data acquired from selected sensor were analyzed by pattern analysis methods, principal component analysis and Sammon's mapping to analyze cluster tendency in the low space (2D). The sensor array by stepwise sensor elimination method had a better sensitivity and selectivity compared to a result of Wilks's lambda method.

Investigation of the Lateral Acoustic Signal Detection Using by Two Fabry-Perot Fiber Optic Sensor Array (두 개의 Fabry-Perot 광섬유 센서 배열을 이용한 횡방향 음압 감지 특성 연구)

  • Lee, Jong kil
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.185-199
    • /
    • 2006
  • In this paper, to detect lateral direction sound pressure fiber optic sensor using Fabry-Perot interferometeric sensor array was fabricated and experimented. This parallel sensor array composed of one light source and the light split into each sensor using directional coupler and to see the output signal the array system do not need any digital signal processor. As a lateral direction sound source arbitrary sound frequency of 100Hz, 200Hz, and 655Hz using by nondirectional speaker were applied to the array sensor which installed on $60cm{\times}60cm{\times}60cm$ latticed structure. The detected signals from the two sensors were analyzed in the time and frequency domains. It was confirmed that the suggested sensor array detected applied sound source well but there were a little amplitude differences in between the sensors. Because the sensor supported simply at both ends theoretical analysis was performed and its solution was suggested. To compare the theoretical and experimental results arbitrary sound frequency of 2kHz was applied to the sensor array. It shows that experimental results was good agreement with theoretical results.

Post-processing Technique for Improving the Odor-identification Performance based on E-Nose System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.368-372
    • /
    • 2015
  • In this paper, we proposed a post-processing technique for improving classification performance of electronic nose (E-Nose) system which may be occurred drift signals from sensor array. An adaptive radial basis function network using stochastic gradient (SG) and singular value decomposition (SVD) is applied to process signals from sensor array. Due to drift from sensor's aging and poisoning problems, the final classification results may be showed bias and fluctuations. The predicted classification results with drift are quantized to determine which identification level each class is on. To mitigate sharp fluctuations moving-averaging (MA) technique is applied to quantized identification results. Finally, quantization and some edge correction process are used to decide levels of the fluctuation-smoothed identification results. The proposed technique has been indicated that E-Nose system was shown correct odor identification results even if drift occurred in sensor array. It has been confirmed throughout the experimental works. The enhancements have produced a very robust odor identification capability which can compensate for decision errors induced from drift effects with sensor array in electronic nose system.