• Title/Summary/Keyword: Array platform

Search Result 144, Processing Time 0.028 seconds

Design and Implementation of Image-Pyramid

  • Lee, Bongkyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1154-1158
    • /
    • 2016
  • This paper presents a System-On-a-chip for embedded image processing applications that need Gaussian Pyramid structure. The system is fully implemented into Field-Programmable Gate Array (FPGA) based on the prototyping platform. The SoC consists of embedded processor core and a hardware accelerator for Gaussian Pyramid construction. The performance of the implementation is benchmarked against software implementations on different platforms.

A SoC Based on a Neural Network for Embedded Smart Applications (임베디드 스마트 응용을 위한 신경망기반 SoC)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2059-2063
    • /
    • 2009
  • This paper presents a programmable System-On-a-chip (SoC) for various embedded smart applications that need Neural Network computations. The system is fully implemented into a prototyping platform based on Field Programmable Gate Array (FPGA). The SoC consists of an embedded processor core and a reconfigurable hardware accelerator for neural computations. The performance of the SoC is evaluated using a real image processing application, an optical character recognition (OCR) system.

Sound Source Localization using HRTF database

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.751-755
    • /
    • 2005
  • We propose a sound source localization method using the Head-Related-Transfer-Function (HRTF) to be implemented in a robot platform. In conventional localization methods, the location of a sound source is estimated from the time delays of wave fronts arriving in each microphone standing in an array formation in free-field. In case of a human head this corresponds to Interaural-Time-Delay (ITD) which is simply the time delay of incoming sound waves between the two ears. Although ITD is an excellent sound cue in stimulating a lateral perception on the horizontal plane, confusion is often raised when tracking the sound location from ITD alone because each sound source and its mirror image about the interaural axis share the same ITD. On the other hand, HRTFs associated with a dummy head microphone system or a robot platform with several microphones contain not only the information regarding proper time delays but also phase and magnitude distortions due to diffraction and scattering by the shading object such as the head and body of the platform. As a result, a set of HRTFs for any given platform provides a substantial amount of information as to the whereabouts of the source once proper analysis can be performed. In this study, we introduce new phase and magnitude criteria to be satisfied by a set of output signals from the microphones in order to find the sound source location in accordance with the HRTF database empirically obtained in an anechoic chamber with the given platform. The suggested method is verified through an experiment in a household environment and compared against the conventional method in performance.

  • PDF

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

Implementation and Verification of Channel Adaptive Private Broadcasting System Based on USRP (USRP기반 채널 적응형 개인방송시스템 구현 및 검증)

  • Yoo, Sinwoo;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.694-702
    • /
    • 2022
  • This paper shows a small and low-powered wireless communication system based on the ATSC broadcasting system using the ISM frequency band that can be used as a PBS(Personal Broadcasting System). It is designed to demonstrate a channel-adaptive CR(Cognitive Radio) system to provide a better service quality in the unlicensed band where co-channel interference exists. And it achieved very reliable communications by a closed-loop active phased array antenna. This ATSC-based personal broadcasting platform can be modified easily with given flexibility by using GNU Radio as an open-source signal processing platform based on USRP and implementing additional functions in FPGA. In addition, the chosen communication frequency resource can be managed and controlled by the return channel that transmits the channel status and communication parameters between transmission and reception in real-time.

Recent Development of Protein Microarray and Proteogen Platform

  • Han, Moon-Hi;Kang, In-Cheol;Lee, Yoon-Suk;Cho, Yong-Wan;Lee, Eun-Kyoung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.47-47
    • /
    • 2005
  • There are many different surface technologies currently applied for preparation of protein chips. However, it requires innovative surface chemistry for capture proteins to be immobilized on chip surface keeping their conformation and activity intact and their orientation right, while they bind tightly and densely in a given array spot. Proteogen has developed 'ProteoChip BP' coated with novel proprietary linker molecules $(ProLinker^{TM})$ for efficient and robust immobilizations of capture proteins by improving surface properties of molecular captures. It was demonstrated that $ProLinker^{TM}$ gave the best surface performance in preparation of protein microarray chip base plates among others currently available on the market. In particular, the $ProLinker^{TM}-based$ surface chemistry has demonstrated to provide excellent performance in preparation of 'Antibody Chip' for analysis of biomarkers as well as proteome expression profiles. The linker molecule has also shown to be well applicable for development of biosensors and micro-beads as well as protein microarray and nano-array. ProteoChip BP can be used either for preparation of high-density array by using a microarrayer or for preparation of 'Well-on-a-Chip' with low density array, which is better applicable for quantitative analysis of biomarkers or protein-protein interactions. The biomarker assay can be performed either by direct or sandwich methods of fluorescence immunoassay. Application of ProteoChip BP has been well demonstrated by the extensive studies of 1) tumor-marker assays, 2) new drug screening by using 'Integrin Chip' and 3) protein expression profile analysis. Some of experimental results will be presented.

  • PDF

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

FPGA Modem Platform Design for eHSPA and Its Regularized Verification Methodology (eHSPA 규격을 만족하는 FPGA모뎀 플랫폼 설계 및 검증기법)

  • Kwon, Hyun-Il;Kim, Kyung-Ho;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • In this paper, the FPGA modem platform complying with 3GPP Release 7 eHSPA specifications and its regularized verification flow are proposed. The FFGA platform consists of modem board supporting physical layer requirements, MCU and DSP core embedded control board to drive the modem board, and peripheral boards for RF interfacing and various equipment interfaces. On the other hand, the proposed verification flow has been regularized into three categories according to the correlation degrees of hardware-software inter-operation, such as simple function test, scenario test call processing and system-level performance test. When it comes to real implementations, the emulation verification strategy for low power mobile SoC is also introduced.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.