• Title/Summary/Keyword: Array electrode

Search Result 223, Processing Time 0.032 seconds

Earth Analysis Method for Installation of Equipment for Moving Pesticide Spraying System (농약살포시스템 이동을 위한 기구물 설치를 위한 대지 분석방법)

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1152-1157
    • /
    • 2018
  • In this paper, we try to solve the difficulties of the location of the structure for the movement of the wire - based pesticide spraying equipment designed for field farming. To do this, we apply earth resistivity measurement method and analysis technique which can indirectly grasp the earth structure. Electrodes are installed on the field in a selected farming area, and multi-switches built in the control board are driven to automatically acquire ground resistivity data. Then, the optimal point suitable for the actual structure installation is selected through the site analysis using the 2D image restoration algorithm.

Development of Dielectric Constant Sensor for Measurementof Lubricant Properties (윤활유 물성 측정을 위한 유전상수 센서 개발)

  • Hong, Sung-Ho;Kang, Moon-Sik
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

Effect of Stimulus Waveform of Biphasic Current Pulse on Retinal Ganglion Cell Responses in Retinal Degeneration (rd1) mice

  • Ahn, Kun No;Ahn, Jeong Yeol;Kim, Jae-Hyung;Cho, Kyoungrok;Koo, Kyo-In;Senok, Solomon S.;Goo, Yong Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.167-175
    • /
    • 2015
  • A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an $8{\times}8$ multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than $10{\mu}A$ and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to $500{\mu}s$($30{\mu}A$), changing the intensities (or duration) from 2 to $60{\mu}A$(60 to $1000{\mu}s$). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse.

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF

Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array (다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분)

  • Jin Gye Hwan;Lee Tae Soo;Goo Yang Sook
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.148-154
    • /
    • 2005
  • Since the output of retina for visual stimulus is carried by neurons of very diverse functional properties, it is not adequate to use conventional single electrode for recording the retinal action potential. For this purpose, we used newly developed multichannel recording system for monitoring the simultaneous electrical activities of many neurons in a functioning piece of retina. Retinal action potentials are recorded with an extra-cellular planar array of 60 microelectrodes. In studying the collective activity of the ganglion cell population it is essential to recognize basic functional distinctions between individual neurons. Therefore, it is necessary to detect and to classify the action potential of each ganglion cell out of mixed signal. We programmed M-files with MATLAB for this sorting process. This processing is mandatory for further analysis, e.g. poststimulus time histogram (PSTH), auto-correlogram, and cross-correlogram. We established MATLAB based protocol for waveform classification and verified that this approach was effective as an initial spike sorting method.

  • PDF

A unit pixel drive and field emission characteristics of oxidized porous polysilicon field emission display (산화된 다공질 폴리실리콘 전계방출 소자의 픽셀별 구동 및 특성)

  • You, Sung-Won;Kim, Jin-Eui;Choi, Sie-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, we fabricated the field emitter display using oxidized porous polysilicon(OPPS). Their field emission characteristics and the brightness were investigated for each pixel. The OPPS emitter was operated to each pixel using passive matrix for application of large panel display. We set up the proper thickness and width of upper electrode. The fine structure of OPPS was analyzed and the field emission characteristics of each pixel were investigated. As a result of field emission characteristics of different upper electrode thickness and width, we confirmed that the most efficient thickness was 2nm/7nm and increased the emission efficiency over the width of 2.5 mm. Even if field emission characteristics of each pixel was a little different but we confirmed the same leakage current and emission current, emission efficiency at each pixel. The leakage current and emission current was decreased according to the time increases but all of each pixel were uniformly decreased. We confirmed that the brightness of each pixel was not different and the brightness of OPPS field emitter was 700 cd/m2 at the Vps=20 V. Accordingly, the patterned OPPS field emitter can be applied to high quality field emission display devices.

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR (전기비저항, 탄성파 그리고 GPR 탐사를 활용한 충적층 탐사)

  • Park, Chung-Hwa;Won, Kyung-Sik;Byun, Ji-Hwan;Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.17-29
    • /
    • 2013
  • The geophysical methods have an advantage for investigating the wide area with low cost, and thus the application of these methods has been increased. The objective of this paper estimates the characteristics of alluvium through the geophysical methods including elastic wave, electrical resistivity and ground penetration radar. And the standard penetration test is also carried out for verifying the geophysical data with comparison. The sources of elastic wave method are divided into hammer and sissy and the electrical resistivity method is applied with different sizes, shapes and arrays of electrode for deciding the effective way. The center frequency is determined to be 270 MHz for considering the characteristics of soil. The results of ground penetration radar are also compared with those of standard penetration test. The high resolution shows when the source is a sissy in elastic wave method, however, the water level is not identified. In the electrical resistivity method, the non-polarizable electrode and schlumberger array show highly reliable data and the resolution of ground penetration radar is low. Thus, the results of this study are widely applied for determining the appropriate method when investigating the characteristics of alluvium.

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF