Browse > Article
http://dx.doi.org/10.4196/kjpp.2015.19.2.167

Effect of Stimulus Waveform of Biphasic Current Pulse on Retinal Ganglion Cell Responses in Retinal Degeneration (rd1) mice  

Ahn, Kun No (Department of Physiology, Chungbuk National University School of Medicine)
Ahn, Jeong Yeol (Department of Physiology, Chungbuk National University School of Medicine)
Kim, Jae-Hyung (Department of Ophthalmology, Chungbuk National University School of Medicine)
Cho, Kyoungrok (Department of Information and Communication Engineering, Chungbuk National University College of Electrical and Computer Engineering)
Koo, Kyo-In (Department of Electrical Engineering, University of Ulsan)
Senok, Solomon S. (Neuroscience, Alfaisal University College of Medicine)
Goo, Yong Sook (Department of Physiology, Chungbuk National University School of Medicine)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.19, no.2, 2015 , pp. 167-175 More about this Journal
Abstract
A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an $8{\times}8$ multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than $10{\mu}A$ and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to $500{\mu}s$($30{\mu}A$), changing the intensities (or duration) from 2 to $60{\mu}A$(60 to $1000{\mu}s$). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse.
Keywords
Anodic phase-1st stimulus; Cathodic phase-1st stimulus; Multi-electrode array (MEA); Retinal ganglion cell (RGC); Retinal prosthesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu W, Vichienchom K, Clements M, DeMarco SC, Hughes C, McGucken E, Humayun MS, de Juan E, Weiland JD, Grenberg R. A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE Journal of Solid-State Circuits. 2000;35:1487-1497.   DOI
2 Brummer SB, Turner MJ. Electrical stimulation of the nervous system:the principle of safe charge injection with noble metal electrodes. Bioelectrochem Bioenerg. 1975;2:13-25.   DOI
3 Lilly JC, Hughes JR, Alvord EC Jr, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Science. 1955;121:468-469.   DOI
4 Mortimer JT, Shealy CN, Wheeler C. Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg. 1970;32:553-559.   DOI
5 Mortimer JT, Kaufman D, Roessman U. Intramuscular electrical stimulation: tissue damage. Ann Biomed Eng. 1980;8:235-244.   DOI
6 Scheiner A, Mortimer JT, Roessmann U. Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng. 1990;18:407-425.   DOI
7 Shepherd RK, Javel E. Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear Res. 1999;130:171-188.   DOI
8 Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171-198.   DOI
9 Wagenaar DA, Pine J, Potter SM. Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J Neurosci Methods. 2004;138:27-37.   DOI
10 Farber DB, Flannery JG, Bowes-Rickman C. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Ret Eye Res. 1994;13:31-64.   DOI
11 McLaughlin ME, Sandberg MA, Berson EL, Dryja TP. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet. 1993;4:130-134.   DOI
12 McLaughlin ME, Ehrhart TL, Berson EL, Dryja TP. Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci U S A. 1995;92:3249-3253.   DOI
13 Margolis DJ, Newkirk G, Euler T, Detwiler PB. Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci. 2008;28:6526-6536.   DOI
14 Menzler J, Zeck G. Network oscillations in rod-degenerated mouse retinas. J Neurosci. 2011;31:2280-2291.   DOI
15 Nicolelis MAL. Methods for neural ensemble recordings. New York: CRC press; 1999.
16 Meister M, Berry MJ 2nd. The neural code of the retina. Neuron. 1999;22:435-450.   DOI
17 Jin GH, Cho HS, Lee TS, Goo YS. PCA-based waveform classification of rabbit retinal ganglion cell activity. Korean J Medical Physics. 2003;14:211-217.
18 Chapin JK, Nicolelis MA. Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. J Neurosci Methods. 1999;94:121-140.   DOI
19 Jolliffe IT. Principal component analysis. New York: Springer-Verlag; 2005.
20 Holsheimer J, Demeulemeester H, Nuttin B, de Sutter P. Identification of the target neuronal elements in electrical deep brain stimulation. Eur J Neurosci. 2000;12:4573-4577.
21 Lapicque L. Recherches quantitatives sur l'excitation electrique des nerfs traites comme un polarization. J Physiol Paris. 1907; 9:620-635.
22 Loeb GE, White MW, Jenkins WM. Biophysical considerations in electrical stimulation of the auditory nervous system. Ann N Y Acad Sci. 1983;405:123-136.   DOI
23 Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417-440.   DOI
24 Fried SI, Lasker AC, Desai NJ, Eddington DK, Rizzo JF 3rd. Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. J Neurophysiol. 2009;101: 1972-1987.   DOI
25 Jensen RJ, Rizzo JF 3rd, Ziv OR, Grumet A, Wyatt J. Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode. Invest Ophthalmol Vis Sci. 2003;44:3533-3543.   DOI
26 Wollner DA, Catterall WA. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc Natl Acad Sci U S A. 1986;83:8424-8428.   DOI
27 Boinagrov D, Pangratz-Fuehrer S, Goetz G, Palanker D. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J Neural Eng. 2014;11:026008.   DOI
28 Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol. 2006;95:3311-3327.   DOI
29 Tehovnik EJ. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods. 1996;65:1-17.   DOI
30 Jimbo Y, Kawana A. Electrical stimulation and recording from cultured neurons using a planar electrode array. Bioelectrochem Bioenerg. 1992;29:193-204.   DOI
31 Brown EA, Ross JD, Blum RA, Yoonkey Nam, Wheeler BC, Deweerth SP. Stimulus-artifact elimination in a multi-electrode system. IEEE Trans Biomed Circuits Syst. 2008;2:10-21.   DOI
32 Wagenaar DA, Potter SM. Real-time multi-channel stimulus artifact suppression by local curve fitting. J Neurosci Methods. 2002;120:113-120.   DOI
33 Nanduri D, Fine I, Horsager A, Boynton GM, Humayun MS, Greenberg RJ, Weiland JD. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest Ophthalmol Vis Sci. 2012;53:205-214.   DOI
34 Tombran-Tink J, Barnstable CJ, Rizzo JF 3rd. Visual prosthesis and ophthalmic devices: new hope in sight. Totawa: Humana Press; 2007.
35 Arnold JJ, Heriot W. Age related macular degeneration. Clin Evid (Online). 2007;2007. pii: 0701.
36 Sieving PA, Caruso RC. Retinitis pigmentosa and related disorders. In: Yanoff M, Duker JS, editors. Ophthalmology. 3rd ed. Maryland Heights: Elsevier; 2008. chap 6.10.
37 Chader GJ, Weiland J, Humayun MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res. 2009;175:317-332.   DOI
38 Rizzo JF 3rd. Update on retinal prosthetic research: the Boston Retinal Implant Project. J Neuroophthalmol. 2011;31:160-168.   DOI
39 Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278:1489-1497.   DOI
40 Grumet AE, Wyatt JL Jr, Rizzo JF 3rd. Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods. 2000;101:31-42.   DOI
41 Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E. Electrical multisite stimulation of the isolated chicken retina. Vision Res. 2000;40:1785-1795.   DOI
42 Ye JH, Goo YS. The slow wave component of retinal activity in rd/rd mice recorded with a multi-electrode array. Physiol Meas. 2007;28:1079-1088.   DOI
43 Ye JH, Ryu SB, Kim KH, Goo YS. Functional connectivity map of retinal ganglion cells for retinal prosthesis. Korean J Physiol Pharmacol. 2008;12:307-314.   DOI
44 Goo YS, Ye JH, Lee S, Nam Y, Ryu SB, Kim KH. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas. J Neural Eng. 2011;8:035003.   DOI
45 Goo YS, Ahn KN, Song YJ, Ahn SH, Han SK, Ryu SB, Kim KH. Spontaneous oscillatory rhythm in retinal activities of two retinal degeneration (rd1 and rd10) mice. Korean J Physiol Pharmacol. 2011;15:415-422.   DOI
46 Jae SA, Ahn KN, Kim JY, Seo JH, Kim HK, Goo YS. Electrophysiological and histologic evaluation of the time course of retinal degeneration in the rd10 mouse model of retinitis pigmentosa. Korean J Physiol Pharmacol. 2013;17: 229-235.   DOI