• Title/Summary/Keyword: Array algorithm

Search Result 1,209, Processing Time 0.028 seconds

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

Spatial Spectrum Estimation of Incident Signal Via Measured Array Manifold (측정 Array Manifold를 적용한 입사 신호의 공간 스펙트럼 추정)

  • 강흥용;이성윤;김영수;김창주;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.223-230
    • /
    • 2004
  • A method for measuring array manifold which is the array antenna response of incident signal is presented. Array manifold measurement procedure by the presented method is explained for UCA(Uniform Circular Array), and spatial spectrum of 300 ㎒ tone signal incident on UCA is estimated by MUSIC algorithm in which spatial spectrum peak is searched with measured array manifold. Spatial spectrum estimation using array manifold measured by the proposed method shows superior performance to calculated array manifold.

A Systolic Array for High-Speed Computing of Full Search Block Matching Algorithm

  • Jung, Soon-Ho;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1275-1286
    • /
    • 2011
  • This paper proposes a high speed systolic array architecture for full search block matching algorithm (FBMA). The pixels of the search area for a reference block are input only one time to find the matched candidate block and reused to compute the sum of absolute difference (SAD) for the adjacent candidate blocks. Each row of designed 2-dimensional systolic array compares the reference block with the adjacent blocks of the same row in search area. The lower rows of the designed array get the pixels from the upper row and compute the SAD with reusing the overlapped pixels of the candidate blocks within same column of the search area. This designed array has no data broadcasting and global paths. The comparison with existing architectures shows that this array is superior in terms of throughput through it requires a little more hardware.

Angle-of-Arrival Estimation Algorithm Based on Combined Array Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • The Angle-of-Arrival (AOA) estimation in real time is one of core technologies for the real-time tracking system, such as a radar or a satellite. Although AOA estimation algorithms for various antenna types have been studied, most of them are for the single-shaped array antenna suitable to the specific frequency. In this paper, we propose the cascade AOA estimation algorithm for the combined array antenna with Uniform Rectangular Frame Array (URFA) and Uniform Circular Array (UCA), with the excellent performance for various frequencies. The proposed technique is consisted of Capon for roughly finding AOA groups with multiple signal AOAs and Beamspace Multiple Signal Classification (MUSIC) for estimating the detailed signal AOA in the AOA group, for the combined array antenna. In addition, we provide computer simulation results for verifying the estimation performance of the proposed algorithm.

Design of an Optimal Planar Array Structure with Uniform Spacing for Side-Lobe Reduction

  • Bae, Ji-Hoon;Seong, Nak-Seon;Pyo, Cheol-Sig;Park, Jae-Ick;Chae, Jong-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • In this paper, we design an optimal planar array geometry for maximum side-lobe reduction. The concept of thinned array is applied to obtain an optimal two dimensional(2-D) planar array structure. First, a 2-D rectangular array with uniform spacing is used as an initial planar array structure. Next, we modify the initial planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraint, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the optimized planar array structure can achieve low side-lobe level without optimizing the excitations of the array antennas.

Content-Addressable Systolic Array for Solving Tridiagonal Linear Equation Systems (삼중대각행렬 선형방정식의 해를 구하기 위한 내용-주소법 씨스톨릭 어레이)

  • 이병홍;김정선;채수환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.6
    • /
    • pp.556-565
    • /
    • 1991
  • Using the WDZ decomposition algorithm, a parallel algorithm is presented for solving the linear system Ax=b which has an nxn nonsingular tridiagonal matrix. For implementing this algorithm a CAM systolic arrary is proposed, and each processing element of this array has its own CAM to store the nonzero elements of the tridiagonal matrix. In order to evaluate this array the algorithm presented is compared to theis compared to the LU decomposition algorithm. It is found that the execution time of the algorithm presented is reduced to about 1/4 than that of the LU decomposition algorithm. If each computation process step can be dome in one time unit, the system of eqations is solved in a systolic fashion without central control is obtained in 2n+1 time steps.

  • PDF

Generating the Array of Elemental Image efficiently by using Look-Up Table in Integral Imaging System (집적영상 시스템에서 룩업테이블을 사용한 요소영상 배열의 효과적인 생성)

  • Kwon, Young-Man;Kim, Seung-Chul;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1068-1074
    • /
    • 2008
  • In this paper, we propose the algorithm for generating the array of elemental image by using look-up table (L UT) in a computer generated integral imaging system. It makes the LUT independently for the projection point of x and y. The algorithm using LUT to the existing ones needs less computing time to generate the array of elemental image. By comparing the computing time of proposed algorithm with that of the existing algorithms e xperimently, we proved the efficiency of proposed algorithm.

On-line Calibration algorithm for Asynchronous CDMA-based antenna arrays (비동기 CDMA 시스템 기반의 배열 안테나용 온라인 보정 알고리즘)

  • Lee Chong-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.18-30
    • /
    • 2004
  • In this paper, the calibration problem of an asynchronous CDMA-based antenna array is studied. A new iterative calibration algorithm for antenna array in the presence of frequency offset error is presented. The algorithm is applicable to a non-linear array and does not require a prior knowledge of the (direction of arrivals) DOAs of the signals of any user, and it only requires the code sequence of a reference user. The algorithm is based on the two step procedures, one for estimating both channel and frequency offset and the other for estimating the unknown array gain and phase. Consequently, estimates of the DOAs, the multi-path impulse response of the reference signal sources, and the carrier frequency offset as well as the calibration of antenna array are provided. The performance of the proposed algorithm is investigated by means of computer simulations and is verified by using field data measured through a custom-built W-CDMA test-bed.

An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence (LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘)

  • Sun, Tiefeng;Jang, Jae Hyun;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

Analysis of Computational Complexity for Cascade AOA Estimation Algorithm Based on Single and Double Rim Array Antennas (단일 및 이중 림 어레이 안테나 기반 캐스케이드 AOA 추정 알고리즘의 계산복잡도 분석)

  • Tae-Yun, Kim;Suk-Seung, Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1055-1062
    • /
    • 2022
  • In order to use the Massive MIMO (Multi Input Multi Output) technology using the massive array antenna, it is essential to know the angle of arrival (AOA) of the signal. When using a massive array antenna, the existing AOA estimation algorithm has excellent estimation performance, but also has a disadvantage in that computational complexity increases in proportion to the number of antenna elements. To solve this problem, a cascade AOA estimation algorithm has been proposed and the performance of a single-shaped (non)massive array antenna has been proven through a number of papers. However, the computational complexity of the cascade AOA estimation algorithm to which single and double rim array antennas are applied has not been compared. In this paper, we compare and analyze the computational complexity for AOA estimation when single and double rim array antennas are applied to the cascade AOA estimation algorithm.