• Title/Summary/Keyword: Array Resonator

Search Result 62, Processing Time 0.02 seconds

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

Design of the Circular Microstrip Array Antenna using the Resonater Conception (공진기 이론에 의한 원형 마이크로스트립 배열의 안테나의 설계)

  • 박두석;홍의석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.684-689
    • /
    • 1990
  • We design a circular microstrip array antenna using the admittance of circular resonator. We can design the array antenna, considering equivalent radius of circular microstdrip consistant with conductances which are obtained from excitation coefficeients of the array elements. The antenna with 10 array elements are made on teflon substrate from Tshebyscheff method. It's perfermence are the gain 8.9dB, half power beam width 11.3dge, max, side lobe level -19dB, and they are almost in agreement with the theoretical results.

  • PDF

The single-stage transmission type injection-locked oscillator was designed and fabricated for the active integrated phased array antenna (능동 위상배열 안테나를 위한 single-stage transmission type ijection-locked oscillator(STILO)의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.763-770
    • /
    • 1996
  • In this paper, the Single-stage Transmission type Injectiong-Locked Oscillator(STILO) was designed and fabicated for the Active Integrated Phased Array Antenna(AIPAA) system. The STILO, which was designed and fabricated by injection-locked technique and hair-pin resonator, has the same 210MHz frequency tuning range of the Voltage Controlled Oscillator(VCO) used by varactor. The locking bandwidth of STILO with 11.5MHz bandwidth, is much better than that of the Injection-Locked Dielectric Resonator Oscillator(ILDRO), And the STILO has the improved noise characteristics in AM, FM, and PM. This STILO is useful for the AIPAA, the coupled VCO array, an the MMIC structure.

  • PDF

Design and Performance Test of Silencers with Ring-shaped Resonators (환형 공명기가 설치된 소음기 설계 및 성능 시험)

  • Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Lee, Jong-Hwa;Lee, Hae-Seong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-364
    • /
    • 2011
  • In this study, ring-shaped acoustic resonators were proposed to be installed in a silencer to increase the acoustic performance of silencer in the low-frequency range. Evaluation of noise reduction performance of acoustic resonator arrays was carried out by measuring the random-incidence absorption coefficient. It was found that the absorption coefficient of resonator array was measured up to 1 at 125 Hz of 1/3-octave band center frequency. Insertion losses of silencers with ring-shaped acoustic resonator arrays were measured based on ISO 7235. The results were shown that the ring-shaped resonator could increase the insertion loss up to 13 dB without flow, whereas 7 dB when flow speed reached 15 m/s. As increasing the flow speed above 15 m/s, the effect of acoustic resonator decreased due to the effect of nonlinear air damping of the resonator. It was also found that the increment of pressure drop by the presence of resonator arrays was about 9 % at flow speed of 25 m/s.

Wireless Power Transfer System

  • Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • This paper presents a survey of recent wireless power transfer systems. The issue of wireless power transfer is to achieve a highly efficient system with small positioning errors of the facilities setting. Several theories have been presented to obtain precise system design. This paper presents a summary of design theory for short range power transfer systems and detailed formulations based on a circuit model and an array of infinitesimal dipoles. In addition to these theories, this paper introduces a coil array scheme for improving the efficiency for off axis coils. In the microwave range, tightly coupled resonators provide a highly efficient power transfer system. This paper present san-overlay resonator array consisting of half wavelength microstrip line resonators on the substrate with electromagnetically coupled parasitic elements placed above the bottom resonators. The tight couplings between the waveguide and the load resonator give strong power transmission and achieve a highly efficient system, and enables a contact-less power transfer railroad. Its basic theory and a demonstration of a toy vehicle operating with this system are presented. In the last topic of this paper, harmonic suppression from the rectenna is discussed with respect to acircular microstrip antenna with slits and stubs.

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

Design of Acoustic Resonator Array for Low Frequency Mode Control of Launch Vehicle (위성 발사체 탑재부 저주파 음향 모드 제어를 위한 공명기 배치 설계)

  • Seo, Sang-Hyun;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.521-524
    • /
    • 2005
  • To protect a satellite and electronic equipment from the acoustic loads generated by rocket propulsion system, many launch vehicle use acoustic blanket. Most high frequency region of the acoustic loads is reduced by nose fairing skins and acoustic barrier, but low frequency region is not. In order to control low frequency acoustic mode, we designed away resonator panel which was made of composite materials. This paper shows the absorption coefficient measurement result of resonator and SPL(Sound Pressure Level) reduction by using resonators in a rectangular cavity for experiment. Proper arrangement of acoustic resonators at each mode reduce effectively SPL around the satellite through changing boundary condition.

  • PDF

Experimental Verification of the Unified Formula for Electromechanical Coupling Coefficient of Piezoelectric Resonators

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Cao, Wen-Wu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.110-114
    • /
    • 2006
  • In a previous theoretical paper, we have derived a unified formula by considering 2-D coupled mode vibrations. The unified formula for electromechanical coupling coefficient of piezoelectric resonator was verified experimentally. The capacitance change near the resonant frequency was investigated to estimate the effective coupling coefficient of the resonator instead of the conventional method based on I-D model. The susceptance spectra were measured for the seven samples of piezoelectric resonator with different aspect ratio. Excellent agreement between theoretical and experimental results was obtained.

Improving the Isolation of MIMO Antennas Using Split Ring Resonators

  • Lee, Young-Ki;Chung, Hae-Il;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.303-308
    • /
    • 2010
  • This paper proposes a method for improving the isolation characteristic of multi-input multi-output (MIMO) antennas using a split ring resonator (SRR) array structure between the two radiating elements. The fabricated antenna satisfies the 10 dB return loss requirement in the Mobile-WiMAX frequency band from 3.4 GHz to 3.6 GHz. The isolation between the two radiating elements is improved by approximately 20 dB at the center frequency by inserting a SRR array structure. The measured peak gains of the two elements are 2.3 dBi and 2.4 dBi, respectively.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.