• 제목/요약/키워드: Armendariz modules

검색결과 5건 처리시간 0.018초

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

On McCoy modules

  • Cui, Jian;Chen, Jianlong
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.23-33
    • /
    • 2011
  • Extending the notion of McCoy rings, we introduce the class of McCoy modules. Over a given ring R, it contains the class of Armendariz modules (over R). Some properties of this class of modules are established, and equivalent conditions for McCoy modules are given. Moreover, we study the relationship between a module and its polynomial module. Several known results relating to McCoy rings can be obtained as corollaries of our results.

On Quasi-Baer and p.q.-Baer Modules

  • Basser, Muhittin;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.255-263
    • /
    • 2009
  • For an endomorphism ${\alpha}$ of R, in [1], a module $M_R$ is called ${\alpha}$-compatible if, for any $m{\in}M$ and $a{\in}R$, ma = 0 iff $m{\alpha}(a)$ = 0, which are a generalization of ${\alpha}$-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module MR and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an ${\alpha}$-compatible module $M_R$ (1) $M_R$ is p.q.-Baer module iff $M[x;{\alpha}]_{R[x;{\alpha}]}$ is p.q.-Baer module. (2) for an automorphism ${\alpha}$ of R, $M_R$ is p.q.-Baer module iff $M[x,x^{-1};{\alpha}]_{R[x,x^{-1};{\alpha}]}$ is p.q.-Baer module.

ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권3호
    • /
    • pp.177-183
    • /
    • 2003
  • In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [Rings of operators. W. A. Benjamin, Inc., New York, 1968] to abstract the algebra of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p.-rings were introduced by Hattori [A foundation of torsion theory for modules over general rings. Nagoya Math. J. 17 (1960) 147-158] to study the torsion theory. The purpose of this paper is to introduce the near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from ring case, and to extend a results of Armendariz [A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974), 470-473] and Jøndrup [p.p. rings and finitely generated flat ideals. Proc. Amer. Math. Soc. 28 (1971) 431-435].

  • PDF