ON MODULES OVER (qa)-RINGS

By E.P. Armendariz

All rings considered will have a unit and modules will be unital left modules. In a recent paper [4], H. Harui has considered modules over commutative rings whose total quotient ring is Artinian, called (qa)-rings. The purpose of this note is to extend two of the main results of his paper to non-commutative rings. Specifically, we show (Theorem 2.2) that for a ring R having a quasi-Frobenius quotient ring, if M is an k-divisible R-module such that M/t(M) is an injective R-module then t(M) is a direct summand of M; this extends Theorem 2.10 of [4]. Moreover, extending Theorem 3.3 of [4], we show that if R is a ring with an Artinian quotient ring Q, then Q is semisimple if and only if E(M)/M is a torsion R-module for all R-modules M.

1. Preliminaries.

Our notation will be the same as that of [4]. Thus let S denote the set of non-zero divisors of R. An R-module M is divisible if aM = M for all $a \in S$, while M is h-divisible if M is a homomorphic image of an injective R-module. For any R-module M, $t(M) = \{x \in M \mid ax = 0 \text{ for some } a \in S\}$. A ring R is quasi-Frobenius if R is (left) Artinian and R is an injective R-module. A ring Q is a quotient ring of R if $a^{-1} \in Q$ for all $a \in S$ and given any $q \in Q$, $q = a^{-1}b$ for some $a \in S$, $b \in R$. Finally, the (left) singular ideal of R will be denoted by $Z_I(R)$, while E(M) will denote the injective envelope of the R-module M.

2. Main Results.

The following proposition is well-known and its proof is similar to that for commutative rings, (see, e.g. [6]).

PROPOSITION 2.1. Let R be a ring with quotie t ring Q. Then:

- (a) Every injective R-module is divisible.
- (b) Every torsion-free divisible R-module M is a Q-module and M is Q-injective if and only if M is R-injective.

We now extend Theorem 2.10 of [4] to non-commutative rings having a quasi-

Frobenius ring of quotients.

THEOREM 2.2. Let R be a ring having a quasi-Frobenius quotient ring Q. If M is an h-divisible R-module and M/t(M) is an injective R-module, then t(M) is a direct summand of M.

PROOF. Since M/t(M) is a torsion-free injective R-module, M/t(M) is an injective Q-module by Proposition 2.1. As Q is quasi-Frobenius, every injective Q-module is a projective Q-module [1, p. 402]. Now M is h-divisible hence, as in [4], there is an R-module F which is isomorphic to a direct sum of copies of Q and an epimorphism $\alpha: F \to M$. Thus F is also a Q-module. Let $\beta: M \to M/t(M)$ be the natural homomorphism and let $f = \beta \alpha: F \to M/t(M)$. For any $q = a^{-1}b \in Q$, $x \in F$ we have $a[\alpha(qx) + t(M)] = \alpha(bx) + t(M) = b[\alpha(x) + t(M)]$ and so f(qx) = qf(x); i.e., f is a Q-homomorphism. Thus K = Ker f is a Q-direct summand of F, say $F = K \oplus D$, and this is also a splitting of F as an R-module. Now let $A = \alpha(D)$. We claim that $M = A \oplus t(M)$. For if $x \in A \cap t(M)$, $x = \alpha(d)$ then $0 = \beta \alpha(d) = f(d)$ so d = 0 and hence x = 0. Also if $m \in M$, $m = \alpha(x)$ with x = d + k where $d \in D$, $k \in K$ and so $m = \alpha(d) + \alpha(k)$. Since $0 = f(k) = \beta \alpha(k)$, $\alpha(k) \in t(M)$ and so $M = A \oplus t(M)$. This completes the proof.

As a consequence we have the

COROLLARY. Let R be a ring having a semisimple Artinian quotient ring Q. Then t(M) is a direct summand of M for every h-divisible R-module M.

PROOF. Since M/t(M) is torsion-free and h-divisible (hence divisible) it is a Q-module and thus Q-injective. But then M/t(M) is R-injective and the theorem applied.

We next consider a condition which ensures that a ring R having an Artinian quotient ring will be semiprime. This result extends Theorem 3.3 of [4] to non-commutative rings.

THEOREM 2.3. Let R be a ring having an Artinian quotient ring Q. The following conditions are then equivalent:

- (a) R is semiprime.
- (b) Q is semisimple.
- (c) E(M)/M is a torsion R-module for each R-module M.

PROOF. The equivalence of (a) and (b) follows from Small's Theorem [7] since $P(R) = R \cap P(Q)$ where P(Q) - (P(R)) denotes the prime radical of Q(R).

If (b) holds then by [3, Thm. 3.9] every essential left ideal of R contains a non-zero divisor. Since M is essential in E(M), for any $x \in E(M)$, $(M:x) = \{r \in R \mid rx \in M\}$ is an essential left ideal of R. Thus there is a non-zero divisor $a \in R$ for which $ax \in M$ and so E(M)/M is a torsion R-module. Now assume (c) holds. First note that t(E(R)) = 0 since R is essential in E(R) and t(R) = 0. Thus $\operatorname{Hom}_{\mathbb{R}}(E(R)/R, E(R))$ =0 and so the exact sequence $0 \rightarrow R \rightarrow E(R) \rightarrow E(R)/R \rightarrow 0$ gives rise to the exact $0 \rightarrow \operatorname{Hom}_R(E(R), E(R)) \rightarrow \operatorname{Hom}_R(R, E(R)) \rightarrow \operatorname{Ext}_R^1(R, E(R)) = 0,$ $\operatorname{Hom}_R(R, E(R)) \approx E(R)$. Thus E(R) has a ring structure compatible with the Rmodule structure. Moreover we can consider $Q \subset E(R) = K$ so R has K as a ring of quotients and it can be verified that K is self-injective. Since R is finite-dimensional as an R-module, K is finite-dimensional as a K-module. Now if I is an essential left ideal of R then E(I) = E(R) so $R/I \subset K/I$ hence R/I is torsion. Thus every essential left ideal of R contains a non-zerodivisor and so $Z_I(R) = 0$. But then $Z_I(K)$ =0 and so by [2, Thm. 1, p. 44], K is a regular finite-dimensional ring hence semisimple Artinian. Since $P(R) = P(K) \cap R$, R is then semiprime. This completes the proof.

REMARK. We have shown above that E(R) is the maximal left quotient ring of R so that an alternate proof could be given by appealing to results of R. E. Johnson [5].

COROLLARY. Let R be a ring with a semisimple Artinian ring of quotients. If M is a torsion R-module then E(M) is a torsion R-module,

We conclude by giving a condition that ensures that a ring having an Artinian ring of quotients will have a quasi-Frobenius ring of quotients.

PROPOSITION 2.4. Let R be a ring with an Artinian quotient ring Q. Then Q is quasi-Frobenius if and only if Q is an h-divisible R-module.

PROOF. If Q is quasi-Frobenius then Q is an injective Q or R-module. Thus suppose Q is h-divisible and let A be an injective R-module mapping onto Q. Then for some index set I, $\bigoplus \sum_{i \in I} R_i(R_i = R \text{ for all } i \in I)$, maps onto A and this mapping can be extended to an R-homomorphism from $\bigoplus \sum_{i \in I} E(R_i) = F$ onto Q. As in theorem 2.2 E(R) is a Q-module and this last mapping is a Q-homomorphism. Since Q is Q-projective $F = Q_0 \oplus P$ as Q-modules, with $Q \approx Q_0$. Then Q_0 , being cyclic, lies in $F_0 = \bigoplus \sum_{i=1}^k E(R_{ij})$ for some finite subset $\{i_1, \dots, i_k\} \subset I$. Hence it follows that

 $F_0 = Q_0 \oplus (P \cap F_0)$ and so Q_0 is R-injective and so Q is Q- and R-injective by Proposition 2.1.

University of Southwestern Louisiana Lafayette, Louisiana 70501

REFERENCES

- [1] C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [2] C. Faith, Lectures on Injective Modules and quotient rings, Springer Verlag, Berlin, 1967.
- [3] A.W. Goldie, Semiprime rings with maximum condition, Proc. London Math. Soc (3) 10 (1960), 201—220.
- [4] H. Harui, *Modules over* (qa)-rings, J. Sci. Hiroshima Univ. Ser. A-I, 32 (1968), 247—257.
- [5] R.E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385—1392.
- [6] L. Levy, Torsion free and divisible modules over non-integral domains, Can. J. Math. 15 (1963), 132-151.
- [7] L. Small, Orders in Artinian rings, J. Algebra 4 (1966), 13-41.