• Title/Summary/Keyword: Argonaute

Search Result 14, Processing Time 0.135 seconds

Increased Argonaute 2 Expression in Gliomas and its Association with Tumor Progression and Poor Prognosis

  • Feng, Bo;Hu, Peng;Lu, Shu-Jun;Chen, Jin-Bo;Ge, Ru-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4079-4083
    • /
    • 2014
  • Background: Previous studies have showed that argonaute 2 is a potential factor related to genesis of several cancers, however, there have been no reports concerning gliomas. Methods: Paraffin specimens of 129 brain glioma cases were collected from a hospital affiliated to Binzhou Medical University from January 2008 to July 2013. We examined both argonaute 2 mRNA and protein expression by real-time quantitative PCR (qRT-PCR), Western blot analysis, and immunohistochemistry (IHC). The survival curves of the patients were determined using the Kaplan-Meier method and Cox regression, and the log-rank test was used for statistical evaluations. Results: Both argonaute 2 mRNA and protein were upregulated in high-grade when compared to low-grade tumor tissues. Multivariate analysis revealed that argonaute 2 protein expression was independently associated with the overall survival (HR=4.587, 95% CI: 3.001-6.993; P=0.002), and that argonaute 2 protein expression and WHO grading were independent prognostic factors for progression-free survival (HR=4.792, 95% CI: 3.993-5.672; P<0.001, and HR=2.109, 95% CI: 1.278-8.229; P=0.039, respectively). Kaplan-Meier analysis with the log-rank test indicated that high argonaute 2 protein expression had a significant impact on overall survival (P=0.0169) and progression-free survival (P=0.0324). Conclusions: The present study showed that argonaute 2 expression is up-regulated in gliomas. Argonaute 2 might also serve as a novel prognostic marker.

Single-molecule fluorescence measurements reveal the reaction mechanisms of the core-RISC, composed of human Argonaute 2 and a guide RNA

  • Jo, Myung Hyun;Song, Ji-Joon;Hohng, Sungchul
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.643-644
    • /
    • 2015
  • In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.

MicroRNA-directed cleavage of targets: mechanism and experimental approaches

  • Park, June Hyun;Shin, Chanseok
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.417-423
    • /
    • 2014
  • MicroRNAs (miRNAs) are a large family of post-transcriptional regulators, which are 21-24 nt in length and play a role in a wide variety of biological processes in eukaryotes. The past few years have seen rapid progress in our understanding of miRNA biogenesis and the mechanism of action, which commonly entails a combination of target degradation and translational repression. The target degradation mediated by Argonaute-catalyzed endonucleolytic cleavage exerts a significant repressive effect on target mRNA expression, particularly during rapid developmental transitions. This review outlines the current understanding of the mechanistic aspects of this important process and discusses several different experimental approaches to identify miRNA cleavage targets.

Non-canonical targets play an important role in microRNA stability control mechanisms

  • Park, June Hyun;Shin, Chanseok
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.158-159
    • /
    • 2017
  • MicroRNAs (miRNAs) regulate gene expression by guiding the Argonaute (Ago)-containing RNA-induced silencing complex (RISC) to specific target mRNA molecules. It is well established that miRNAs are stabilized by Ago proteins, but the molecular features that trigger miRNA destabilization from Ago proteins remain largely unknown. To explore the molecular mechanisms of how targets affect the stability of miRNAs in human Ago (hAgo) proteins, we employed an in vitro system that consisted of a minimal hAgo2-RISC in HEK293T cell lysates. Surprisingly, we found that miRNAs are drastically destabilized by binding to seedless, non-canonical targets. We showed that miRNAs are destabilized at their 3' ends during this process, which is largely attributed to the conformational flexibility of the L1-PAZ domain. Based on these results, we propose that non-canonical targets may play an important regulatory role in controlling the stability of miRNAs, instead of being regulated by miRNAs.

Cleavage of the Star Strand Facilitates Assembly of Some MicroRNAs into Ago2-containing Silencing Complexes in Mammals

  • Shin, Chanseok
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • In animals, microRNAs (miRNAs) and small interfering RNAs (siRNAs) repress expression of protein coding genes by assembling distinct RNA-induced silencing complexes (RISCs). It has previously been shown that passenger-strand cleavage is the predominant mechanism when siRNA duplexes are loaded into Argonaute2 (Ago2)-containing RISC, while an unwinding bypass mechanism is favored for miRNA duplexes with mismatches. Here I present experimental data indicating that some mammalian miRNAs are assembled into Ago2-containing RISC by cleaving their corresponding miRNA star strands. This phenomenon may depend on the secondary structure near the scissile phosphate of the miRNA duplex. In addition, I show that ATP is not required for star-strand cleavage in this process. Taken together, the data here provide insight into the miRNA-loading mechanisms in mammals.

In Silico Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein

  • Rath, Surya Narayan;Das, Debasrita;Konkimalla, V Badireenath;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.112-124
    • /
    • 2016
  • Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs). Argonaute (AGO) protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A) with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

Elucidation of the Molecular Interaction between miRNAs and the HOXA9 Gene, Involved in Acute Myeloid Leukemia, by the Assistance of Argonaute Protein through a Computational Approach

  • Das, Rohit Pritam;Konkimalla, V. Badireenath;Rath, Surya Narayan;Hansa, Jagadish;Jagdeb, Manaswini
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • Acute myeloid leukemia is a well characterized blood cancer in which the unnatural growth of immature white blood cell takes place, where several genes transcription is regulated by the micro RNAs (miRNAs). Argonaute (AGO) protein is a protein family that binds to the miRNAs and mRNA complex where a strong binding affinity is crucial for its RNA silencing function. By understanding pattern recognition between the miRNAs-mRNA complex and its binding affinity with AGO protein, one can decipher the regulation of a particular gene and develop suitable siRNA for the same in disease condition. In the current work, HOXA9 gene has been selected from literature, whose deregulation is well-established in acute myeloid leukemia. Four miRNAs (mir-145, mir-126, let-7a, and mir-196b) have been selected to target mRNA of HOXA9 (NCBI accession No. NM_152739.3). The binding interaction between mRNAs and mRNA of HOXA9 gene was studied computationally. From result, it was observed mir-145 has highest affinity for HOXA9 gene. Furthermore, the interaction between miRNAs-mRNA duplex of all chosen miRNAs are docked with AGO protein (PDB ID: 3F73, chain A) to study their interaction at molecular level through an in silico approach. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding of AGO-assisted miRNA based gene silencing mechanism in HOXA9 gene associated in acute myeloid leukemia computationally.

DNA Double-Strand Breaks Serve as a Major Factor for the Expression of Arabidopsis Argonaute 2

  • Lee, Sungbeom;Chung, Moon-Soo;Lee, Gun Woong;Chung, Byung Yeoup
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.243-248
    • /
    • 2016
  • Argonaute 2 (AtAGO2) is a well characterized effector protein in Arabidopsis for its functionalities associated with DNA double-strand break (DSB)-induced small RNAs (diRNAs) and for its inducible expression upon ${\gamma}$-irradiation. However, its transcriptional regulation depending on the recovery time after the irradiation and on the specific response to DSBs has been poorly understood. We analyzed the 1,313 bp promoter sequence of the AtAGO2 gene ($1.3kb_{pro}$) to characterize the transcriptional regulation of AtAGO2 at various recovery times after ${\gamma}$-irradiation. A stable transformant harboring $1.3kb_{pro}$ fused with GUS gene showed that the AtAGO2 is highly expressed in response to ${\gamma}$-irradiation, after which the expression of the gene is gradually decreased until 5 days of DNA damage recovery. We also confirm that the AtAGO2 expression patterns are similar to that of ${\gamma}$-irradiation after the treatments of radiomimetic genotoxins (bleomycin and zeocin). However, methyl methanesulfonate and mitomycin C, which are associated with the inhibition of DNA replication, do not induce the expression of the AtAGO2, suggesting that the expression of the AtAGO2 is closely related with DNA DSBs rather than DNA replication.

Small RNAs: Classification, Biogenesis, and Function

  • Kim, V. Narry
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Eukaryotes produce various types of small RNAs of 19-28 nt in length. With rapidly increasing numbers of small RNAs listed in recent years, we have come to realize how widespread their functions are and how diverse the biogenesis pathways have evolved. At the same time, we are beginning to grasp the common features and rules governing the key steps in small RNA pathways. In this review, I will summarize the current classification, biogenesis, action mechanism and function of these fascinating molecules.

Rules for functional microRNA targeting

  • Kim, Doyeon;Chang, Hee Ryung;Baek, Daehyun
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.554-559
    • /
    • 2017
  • MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.