Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.8.109

MicroRNA-directed cleavage of targets: mechanism and experimental approaches  

Park, June Hyun (Department of Agricultural Biotechnology, Seoul National University)
Shin, Chanseok (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
BMB Reports / v.47, no.8, 2014 , pp. 417-423 More about this Journal
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators, which are 21-24 nt in length and play a role in a wide variety of biological processes in eukaryotes. The past few years have seen rapid progress in our understanding of miRNA biogenesis and the mechanism of action, which commonly entails a combination of target degradation and translational repression. The target degradation mediated by Argonaute-catalyzed endonucleolytic cleavage exerts a significant repressive effect on target mRNA expression, particularly during rapid developmental transitions. This review outlines the current understanding of the mechanistic aspects of this important process and discusses several different experimental approaches to identify miRNA cleavage targets.
Keywords
Argonaute protein; MicroRNA; MicroRNA-directed cleavage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 German, M. A., Pillay, M., Jeong, D. H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L. A., Nobuta, K., German, R., De Paoli, E., Lu, C., Schroth, G., Meyers, B. C. and Green, P. J. (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26, 941-946.   DOI   ScienceOn
2 Gregory, B. D., O'Malley, R. C., Lister, R., Urich, M. A., Tonti-Filippini, J., Chen, H., Millar, A. H. and Ecker, J. R. (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 14, 854-866.   DOI   ScienceOn
3 Nowotny, M., Gaidamakov, S. A., Crouch, R. J. and Yang, W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005-1016.   DOI   ScienceOn
4 Jinek, M. and Doudna, J. A. (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405-412.   DOI   ScienceOn
5 Frank, F., Sonenberg, N. and Nagar, B. (2010) Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818-822.   DOI   ScienceOn
6 Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. and Weichenrieder, O. (2011) Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl. Acad. Sci. U. S. A. 108, 10466-10471.   DOI   ScienceOn
7 Rivas, F. V., Tolia, N. H., Song, J. J., Aragon, J. P., Liu, J., Hannon, G. J. and Joshua-Tor, L. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340-349.   DOI   ScienceOn
8 Nakanishi, K., Weinberg, D. E., Bartel, D. P. and Patel, D. J. (2012) Structure of yeast Argonaute with guide RNA. Nature 486, 368-374.   DOI   ScienceOn
9 Schurmann, N., Trabuco, L. G., Bender, C., Russell, R. B. and Grimm, D. (2013) Molecular dissection of human Argonaute proteins by DNA shuffling. Nat. Struct. Mol. Biol. 20, 818-826.   DOI   ScienceOn
10 Faehnle, C. R., Elkayam, E., Haase, A. D., Hannon, G. J. and Joshua-Tor, L. (2013) The making of a slicer: activation of human Argonaute-1. Cell Reports 3, 1901-1909.   DOI   ScienceOn
11 Cerutti, L., Mian, N. and Bateman, A. (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends. Biochem. Sci. 25, 481-482.   DOI   ScienceOn
12 Bazzini, A. A., Lee, M. T. and Giraldez, A. J. (2012) Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish. Science 336, 233-237.   DOI   ScienceOn
13 Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C. (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170-180.   DOI   ScienceOn
14 Ender, C. and Meister, G. (2010) Argonaute proteins at a glance. J. Cell Sci. 123, 1819-1823.   DOI   ScienceOn
15 Lingel, A., Simon, B., Izaurralde, E. and Sattler, M. (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465-469.   DOI   ScienceOn
16 Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T. and Patel, D. J. (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754-761.   DOI   ScienceOn
17 Song, J. J., Smith, S. K., Hannon, G. J. and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437.   DOI   ScienceOn
18 Voinnet, O. (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687.   DOI   ScienceOn
19 Wang, Y., Sheng, G., Juranek, S., Tuschl, T. and Patel, D. J. (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209-213.   DOI   ScienceOn
20 Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. and Bartel, D. P. (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71.   DOI   ScienceOn
21 Shin, C. (2008) Cleavage of the star strand facilitates assembly of some microRNAs into Ago2-containing silencing complexes in mammals. Mol. Cells 26, 308-313.
22 Huntzinger, E. and Izaurralde, E. (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99-110.   DOI   ScienceOn
23 Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V. N. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.   DOI   ScienceOn
24 Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610.
25 Mercer, T. R., Dinger, M. E., Bracken, C. P., Kolle, G., Szubert, J. M., Korbie, D. J., Askarian-Amiri, M. E., Gardiner, B. B., Goodall, G. J., Grimmond, S. M. and Mattick, J. S. (2010) Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 20, 1639-1650.   DOI   ScienceOn
26 Iwakawa, H. and Tomari, Y. (2013) Molecular Insights into microRNA-Mediated Translational Repression in Plants. Mol. Cell 52, 591-601.   DOI   ScienceOn
27 Moran, Y., Fredman, D., Praher, D., Li, X. Z., Wee, L. M., Rentzsch, F., Zamore, P. D., Technau, U. and Seitz, H. (2014) Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 24, 651-663.   DOI   ScienceOn
28 Moran, Y., Praher, D., Fredman, D. and Technau, U. (2013) The evolution of microRNA pathway protein components in Cnidaria. Mol. Biol. Evol. 30, 2541-2552.   DOI   ScienceOn
29 Gandikota, M., Birkenbihl, R. P., Hohmann, S., Cardon, G. H., Saedler, H. and Huijser, P. (2007) The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 49, 683-693.   DOI   ScienceOn
30 Aukerman, M. J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741.   DOI   ScienceOn
31 Jeong, D. H., Schmidt, S. A., Rymarquis, L. A., Park, S., Ganssmann, M., German, M. A., Accerbi, M., Zhai, J., Fahlgren, N., Fox, S. E., Garvin, D. F., Mockler, T. C., Carrington, J. C., Meyers, B. C. and Green, P. J. (2013) Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol. 14, R145.   DOI   ScienceOn
32 Li, Y. F., Zheng, Y., Addo-Quaye, C., Zhang, L., Saini, A., Jagadeeswaran, G., Axtell, M. J., Zhang, W. X. and Sunkar, R. (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J. 62, 742-759.   DOI   ScienceOn
33 Karlova, R., van Haarst, J. C., Maliepaard, C., van de Geest, H., Bovy, A. G., Lammers, M., Angenent, G. C. and de Maagd, R. A. (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J. Exp. Bot. 64, 1863-1878.   DOI   ScienceOn
34 Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T. and Burgyan, J. (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 62, 960-976.
35 Yekta, S., Shih, I. H. and Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596.   DOI   ScienceOn
36 Hauptmann, J., Dueck, A., Harlander, S., Pfaff, J., Merkl, R. and Meister, G. (2013) Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20, 814-817.   DOI   ScienceOn
37 Shin, C., Nam, J. W., Farh, K. K., Chiang, H. R., Shkumatava, A. and Bartel, D. P. (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789-802.   DOI   ScienceOn
38 Karginov, F. V., Cheloufi, S., Chong, M. M., Stark, A., Smith, A. D. and Hannon, G. J. (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781-788.   DOI   ScienceOn
39 Park, J. H., Ahn, S., Kim, S., Lee, J., Nam, J. W. and Shin, C. (2013) Degradome sequencing reveals an endogenous microRNA target in C. elegans. FEBS Letters 587, 964-969.   DOI   ScienceOn
40 Jones-Rhoades, M. W., Bartel, D. P. and Bartel, B. (2006) MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant. Biol. 57, 19-53.   DOI   ScienceOn
41 Llave, C., Xie, Z., Kasschau, K. D. and Carrington, J. C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-2056.   DOI   ScienceOn
42 Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999) Targeted mRNA degradation by double- stranded RNA in vitro. Genes Dev. 13, 3191-3197.   DOI   ScienceOn
43 Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. and Axtell, M. J. (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758-762.   DOI   ScienceOn
44 Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M. and Weigel, D. (2005) Specific effects of MicroRNAs on the plant transcriptome. Dev. Cell 8, 517-527.   DOI   ScienceOn
45 Song, J. J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., Martienssen, R. A., Hannon, G. J. and Joshua-Tor, L. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026-1032.   DOI   ScienceOn
46 Bari, R., Datt Pant, B., Stitt, M. and Scheible, W. R. (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988-999.   DOI   ScienceOn
47 Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B. and Bartel, D. P. (2002) Prediction of plant microRNA targets. Cell 110, 513-520.   DOI   ScienceOn
48 Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L. and Zhou, M. M. (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426, 468-474.   DOI   ScienceOn
49 Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.   DOI   ScienceOn
50 Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L. and Voinnet, O. (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185-1190.   DOI   ScienceOn
51 Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Ikehara, M., Matsuzaki, T. and Morikawa, K. (1990) Three-dimensional structure of ribonuclease H from E. coli. Nature 347, 306-309.   DOI   ScienceOn