• Title/Summary/Keyword: Argon and helium gases

Search Result 21, Processing Time 0.026 seconds

Color Depth of Polyamide Fabrics Pretreated with Low-Temperature Plasma under Atmospheric Pressure (상압 저온 플라즈마 전처리한 폴리아미드계 직물의 색농도)

  • 이문철
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.134-138
    • /
    • 1993
  • Wool, silk and nylon 6 fabrics were treated with low-temperature plasma under atmospheric pressure of acetone/argon or helium/argon for 30 and 180 sec, and then dyed with leveling type acid dye, C.I. Acid Red 18 and milling type acid dye, C.I. Acid Blue 83. In spite of short time of the plasma treatment for thirty seconds, the color depth of wool fabrics was increased remarkably with both of the plasma gases, aceton/argon or helium/argon and with the kinds of dyes i.e., levelin type or milling type. But the atmosperic low-temperature plasmas did not increase the depth of silk and nylon 6 fabrics dyed with both of the acid dyes regardless of the teated time and plasma gases. It seems that low-temperature plasma by atmospheric-pressure discharge is effective for improvement of dyeing of wools as is the same way with the low-temperature plasma by glow discharge. The kinds of plasma gases and treated time did not influnce the depth of wool fabric pretreted with the atmosperic low-temperature plasmas.

  • PDF

A Study on the Extinction Concentration of Inert Gas for Extinction Performance Estimation of Kerosene (등유의 소화성능 평가를 위한 불활성 가스의 소화농도에 관한 연구)

  • Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.34-38
    • /
    • 2007
  • The experiment was done to investigate extinguishing concentrations of different inert gases of verying concentrations made in contact with Kerosene. The experimental results obtained are as follows; at a standard amount of air flow was 40L/min, the extinguishing concentration of Argon, Nitrogen, Carbon dioxide and Helium for Kerosene were 36.5%, 27.3%, 17.4%, 12.3%, respectively. And, according to these results, Helium of 12.3% showed the lowest extinguishing concentration.

Prediction of Vapor Pressure of the Inert Gases (비활성 기체의 증기압 예측)

  • Chung, Jaygwan-G.
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.541-546
    • /
    • 2003
  • Experimental vapor pressure measurements available in the literature for the inert gases have been rigorously analyzed and used to evaluate the constants A, B, C, D, and exponent of the following equation in the form of reduced vapor pressure and reduced temperature : $InP_r=A+{\frac{B}{T_r}+CInT_r+DT_n^r}$ According to varying exponent n all four constants have been obtained for the inert gases by the error analysis. This has provided us the best n and four constants for each of the inert gases ; Argon, krypton, xenon, helium, and neon. In order to obtain the calculated vapor pressure by the above equation, only the normal boiling point and the critical pressure and critical temperature are necessary to get the vapor pressure for an overall average deviation of 0.31 % for 406 experimental vapor pressure points consisting of five gases available in the literature. The average deviation for argon, krypton, and xenon is 0.24%, 0.09%, and 0.22%, respectively, for neon 1.31% and for helium 0.61%. These results are not unexpected in view of the significant quantum effects associated with helium and to a lesser degree with neon.

Effect of weldability in shielding gases on the GTAW process of austenitic stainless steel (스테인레스강의 GTAW 기법에서 보호가스가 용접성에 미치는 영향)

  • Kim, Dae-Ju;Baek, Ho-Seong;Ryu, Seung-Hyeop;Go, Seong-Hun;Kim, Gyeong-Ju;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.63-65
    • /
    • 2006
  • The paper deals with the effect of hydrogen or helium in argon as a shielding gas on GTA welding of austenitic stainless steel. The studies were carried out in GTA(Gas Tungsten Arc) welding with a non-consumable electrode in case with different volume additions of hydrogen or helium to the argon shielding gas, i.e $5%H_2,\;10%H_2$, 30%He and 67%He. The penetration, welding voltage, microstructure and mechanical property were examined. The deepest penetration was obtained from the sample which was welded under shielding gas of $10%H_2$. The studies showed that hydrogen or helium addition to argon changes the static characteristic of the welding arc. The hydrogen or helium addition to argon increases arc power and the quantity of the material melted. The weld metal penetration depth and its width increased with increasing hydrogen or helium content. Additionally, welding voltage increased with increasing hydrogen or helium content.

  • PDF

The effect of addition of noble gases on negative hydrogen ion production in a dc filament discharge

  • James, B.W.;Curran, N.P.;Hopkins, M.B.;Vender, D.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.40-45
    • /
    • 1999
  • The effect of the addition of helium, neon, argon and xenon on the production of negative hydrogen ions has been studied in a magnetically confined dc filament discharge. The addition of helium and neon produced effects similar to an equivalent increase in hydrogen pressure. However, the addition of argon and low fractions of xenon produced significant increases in the negative ion density for hydrogen at pressures around 1 mTorr. The addition of argon and xenon, by increasing electron density and decreasing electron temperature, achieved conditions closer to optimum for negative ion production. The largest enhancement of negative hydrogen ion density occurred with the addition of argon; it is suggested that this is due to a resonant energy exchange between excited argon atoms and hydrogen molecules.

  • PDF

Percutaneous Cryoablation of Multiple Pulmonary Endometriosis

  • Kim, Chong Hoon;Lee, Doo Yun;Moon, Duk Hwan;Lee, Sungsoo
    • Journal of Chest Surgery
    • /
    • v.54 no.1
    • /
    • pp.75-78
    • /
    • 2021
  • Minimally invasive cryoablation is often considered for lung tumor patients with high surgical risk or inoperable metastatic lung tumors. Cryoablation is a type of thermal percutaneous ablation in which argon and helium gases are delivered via a cryoprobe to induce tissue freezing and necrosis. We report the case of a 23-year-old woman who had suffered from multiple pulmonary endometriosis with frequent intermittent hemoptysis during menstruation for 6 years prior to her visit. She was treated with cryoablation at our hospital, and since her treatment, she has been doing well with no hemoptysis for at least 6 months. Although endometriosis is a benign lung disease, cryoablation is an ideal and effective treatment option for patients with multiple endometriosis.

CFD Analysis of Natural Convection Flow Characteristics of Various Gases in the Spent Fuel Dry Storage System

  • Shin, Doyoung;Jeong, Uiju;Jeun, Gyoodong;Kim, Sung Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • Objective of this study is to compare the inherent characteristics of natural convection flow inside the canister of spent fuel dry storage system with different backfill gases by utilizing computational fluid dynamics (CFD) code. Four working fluids were selected for comparison study. Helium currently used backfill gas for canister, air, nitrogen, and argon are frequently used as coolant in many heat transfer applications. The results indicate that helium has very distinct conductive behavior and show very weak natural convective flow compared to the others. Argon showed the strongest natural convective flow but also the worst coolability. Air and nitrogen showed similar characteristics to each other. However, due to difference in Prandtl number, nitrogen showed more effective natural convective flow. These results suggest that experimental validation for the nitrogen is needed to investigate the potential coolability other than currently commercially used helium.

A Study on Effects of Parameters on Beads by Plasma Arc Welding for Zircaloy-4 (Zircaloy-4의 플라즈마 아크용접에서 용접변수가 비이드형상에 미치는 영향)

  • ;;;Kim, S. S.;Yang, M. S.
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.57-65
    • /
    • 1997
  • A study was undertaken to determine the influence of welding variables such as shielding and plasma gases, torch standoff, travel speed and heat input, etc. on the quality of plasma arc welds in Zircaloy-4 sheet, 2mm thick. Effect of shielding gases and their flow rates on the mechanical properties of Zircaloy-4 welds by plasma arc welding were determined in terms of tensile, bardness and bend tests. The microstructure and fracture surface of Zircaloy-4 welds were investigated by optical and scanning electron microscopies. In addition, the causes of porosity and undercut in plasma arc welds of Zircaloy-4 were also investigated. Zircaloy-4 weld bead width and depth by helium shielding gas showed a wider and deeper than those by argon. It was found that Zircaloy-4 welds with shielding gas of helium did dxhibit a little smoother and uniform weld beads than those with shielding gas of argon. It was also found that the optimum gas flow rates for Zircaloy-4 welding were 0.45l/min for plasma gas with Ar and 4.5 - 6 l/min for shielding gas with He. In addition, there was no big difference in the microstructure and fracture surface of the weld metals made by either Ar shielding gas or He shielding gas.

  • PDF

Study of variables influencing on the metal transfer in GMAW (GMAW의 금속이행에 영향을 주는 변수연구를 위한 계측 시스템과 조건해석)

  • 이세헌
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.73-79
    • /
    • 1993
  • The phenomenon of metal transfer has been investigated for different transfer modes using a digital high speed motion analyzer and an arc shadow-graphing system based on a laser source and related optical system. It was observed that the pinch instability phenomenon did not occur for the globular transfer mode, since the liquid globule was then spherical rateher than a cylindrical liquid bar. On increasing the ratio of carbon dioxide to argon, the transition current from globular to spray transfer generally increased, but it is interesting that the transition was observed to occur at the lowest current in a 5% CO$_{2}$-95% argon gas mixture. For pure carbon dioxide and helium shielding gases, the drop frequency increased slowly with increasing current. At high currents or an argon based shielding gas, the length of liquid bar decreased as the carbon dioxide content increased. The acceleration of a droplet within the arc was determined using the gas drag force theory and was found to be greater than the experimental results.

  • PDF

Characteristics of Poly-Si TFTs Fabricated on Flexible Substrates using Sputter Deposited a-Si Films

  • Kim, Y.H.;Moon, D.G.;Kim, W.K.;Han, J.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.297-300
    • /
    • 2005
  • The characteristics of polycrystalline silicon thin-film transistors (poly-Si TFTs) fabricated using sputter deposited amorphous silicon (a-Si) precursor films are investigated. The a-Si films were deposited on flexible polymer substrates using argon-helium mixture gases to minimize the argon incorporation into the film. The precursor films were then laser annealed by using a XeCl excimer laser and a four-mask-processed poly-Si TFT was fabricated with fully self-aligned top gate structure. The fabricated pMOS TFT showed field-effect mobility of $32.4cm^2/V{\cdot}s$ and on/off ratio of $10^6$.

  • PDF