• 제목/요약/키워드: ArgE

검색결과 98건 처리시간 0.026초

발아에 의한 유채의 아미노산 및 비타민 함량의 조성변화 (Study on the Chemical Change of Amino Acid and Vitamin of Rapeseed during Germination)

  • 김인숙;한성희;한강완
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1058-1062
    • /
    • 1997
  • The objective of this was to investigate the technical feasibility of producing toxicant-free by germination. To this end, rapeseed(Brassica napus L.) was germinated at $25^{\circ}C$ for 120 hours, and the chemical compositions of amino acids and vitamins were determinated in every 24 hours during germination. The results obtained are summarized as follows: Before germination, rapeseed contained 5.4g/16g N of glutamic acid and high percentage of the other amino acids in order of Asp>Leu>His>Pro>Arg>Lys>Gly>Ser>Ala>Val. The amino acids were gradually decreased until 96 hours during germination had tendency to show a slight increase in 120 hours. Vitamin B$_1$, B$_2$and C contents in rapeseed before germination were found to be 0.11, 0.21 and 3.72mg% respectively, and the vitamin E was 423ug/g. The vitamin C greatly increased in 72 hours during germination, while the vitamin B group was drastically decreased in 72 hours. The results obtained by this method clearly demonstrate that germination process is very effective to the removal of toxicants in rapeseed.

  • PDF

이취 제거를 위한 굴 가수분해물의 발효공정과 제품의 특성 (Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties)

  • 이수선;박시향;김현아;최영준
    • 한국식품영양과학회지
    • /
    • 제45권4호
    • /
    • pp.542-550
    • /
    • 2016
  • 굴 가수분해물의 이취 제거를 위한 가수분해 및 발효의 최적 조건과 이의 항산화 효과를 검토하였다. 이취 제거를 위한 굴 가수분해물의 최적 추출 조건은 Neutrase를 이용하여 E/S 3.3%, $50^{\circ}C$, 8.3시간이었으며, 발효 공정은 $24^{\circ}C$에서 glucose 0.5%와 Saccharomyces cerevisiae를 5% 접종하였다. 굴 가수분해 발효물의 구성 아미노산은 25.7%에 해당하였으며, Glu, Asp, Lys, Leu, Arg, Gly 및 Ala이 전체의 61.2%를 차지하였다. 유리 아미노산 조성의 경우 Leu, Ala, Phe, Val 및 Tau의 순으로 높게 나타났다. 또한 무기질 함량은 Na, P, K, Zn, Fe이 높게 나타났으며, 정상 간세포주인 Chang cell에 대한 독성은 나타나지 않았다. 이상의 결과로 미루어 S. cerevisiae에 의해 수산물의 이미취를 masking 할 수 있으나, 기능성 원료로 사용하기 위해 최종 제품의 카드뮴 함량을 저감시킬 대책이 필요하다.

Dual regulatory effects of PI(4,5)P2 on TREK-2 K+ channel through antagonizing interaction between the alkaline residues (K330 and R355-357) in the cytosolic C-terminal helix

  • Kim, Sung Eun;Kim, Myoung-Hwan;Woo, Joohan;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.555-561
    • /
    • 2020
  • TWIK-related two-pore domain K+ channel-2 (TREK-2) has voltage-independent activity and shows additional activation by acidic intracellular pH (pHi) via neutralizing the E332 in the cytoplasmic C terminal (Ct). We reported opposite regulations of TREK-2 by phosphatidylinositol 4,5-bisphosphate (PIP2) via the alkaline K330 and triple Arg residues (R355-357); inhibition and activation, respectively. The G334 between them appeared critical because its mutation (G334A) endowed hTREK-2 with tonic activity, similar to the mutation of the inhibitory K330 (K330A). To further elucidate the role of putative bent conformation at G334, we compared the dual mutation forms, K330A/G334A and G334A/R355-7A, showing higher and lower basal activity, respectively. The results suggested that the tonic activity of G334A owes to a dominant influence from R355-7. Since there are additional triple Arg residues (R377-9) distal to R355-7, we also examined the triple mutant (G334A/R355-7A/R377-9A) that showed tonic inhibition same with G334A/R355-7A. Despite the state of tonic inhibition, the activation by acidic pHi was preserved in both G334A/R355-7A and G334A/R355-7A/R377-9A, similar to the R355-7A. Also, the inhibitory effect of ATP could be commonly demonstrated under the activation by acidic pHi in R355-7A, G334A/R355-7A, and G334A/R355-7A/R377-9A. These results suggest that the putative bent conformation at G334 is important to set the tug-of-war between K330 and R355-7 in the PIP2-dependent regulation of TREK-2.

Arg-Leu-Tyr-Glu Suppresses Retinal Endothelial Permeability and Choroidal Neovascularization by Inhibiting the VEGF Receptor 2 Signaling Pathway

  • Park, Wonjin;Baek, Yi-Yong;Kim, Joohwan;Jo, Dong Hyun;Choi, Seunghwan;Kim, Jin Hyoung;Kim, Taesam;Kim, Suji;Park, Minsik;Kim, Ji Yoon;Won, Moo-Ho;Ha, Kwon-Soo;Kim, Jeong Hun;Kwon, Young-Guen;Kim, Young-Myeong
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.474-483
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF) plays a pivotal role in pathologic ocular neovascularization and vascular leakage via activation of VEGF receptor 2 (VEGFR2). This study was undertaken to evaluate the therapeutic mechanisms and effects of the tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a VEGFR2 inhibitor, in the development of vascular permeability and choroidal neovascularization (CNV). In cultured human retinal microvascular endothelial cells (HRMECs), treatment with RLYE blocked VEGF-A-induced phosphorylation of VEGFR2, Akt, ERK, and endothelial nitric oxide synthase (eNOS), leading to suppression of VEGF-A-mediated hyper-production of NO. Treatment with RLYE also inhibited VEGF-A-stimulated angiogenic processes (migration, proliferation, and tube formation) and the hyperpermeability of HRMECs, in addition to attenuating VEGF-A-induced angiogenesis and vascular permeability in mice. The anti-vascular permeability activity of RLYE was correlated with enhanced stability and positioning of the junction proteins VE-cadherin, ${\beta}$-catenin, claudin-5, and ZO-1, critical components of the cortical actin ring structure and retinal endothelial barrier, at the boundary between HRMECs stimulated with VEGF-A. Furthermore, intravitreally injected RLYE bound to retinal microvascular endothelium and inhibited laser-induced CNV in mice. These findings suggest that RLYE has potential as a therapeutic drug for the treatment of CNV by preventing VEGFR2-mediated vascular leakage and angiogenesis.

Streptococcus parauberis의 퀴놀론 내성 증가와 Topoisomerase 유전자에서의 돌연변이 신속 분석 (Increased Resistance to Quinolones in Streptococcus parauberis and Development of a Rapid Assay for Detecting Mutations in Topoisomerase Genes)

  • 김소연;김영철;정서경;전려진;진지웅;정현도
    • 한국수산과학회지
    • /
    • 제47권3호
    • /
    • pp.247-254
    • /
    • 2014
  • To investigate the acquisition of quinolone resistance, we examined mutations in the quinolone resistance-determining region (QRDR) of type II topoisomerase genes in ciprofloxacin (CIP)-resistant clinical isolates and in vitro mutants of Streptococcus parauberis. The CIP-resistant clinical isolates had one base change responsible for a Ser-79${\rightarrow}$Thr in the QRDR of parC. However, the CIP-resistant in vitro mutants had an altered QRDR of parC (Ser-79${\rightarrow}$Ile) that differed from that of the isolates. None of the CIP-resistant S. parauberis clinical isolates or in vitro mutants exhibited amino acid changes in gyrA or gyrB. However, even though involvement in the increased resistance was not clear, an Arg-449${\rightarrow}$Ser mutation outside of the QRDR of parE was detected in CIP-resistant mutant 2P1. These results suggest that the topoisomerase IV gene, parC (and possibly parE, as well), is the primary ciprofloxacin target in S. parauberis. Additionally we established a high-resolution melting (HRM) assay capable of detecting the dominant mutation in four type II topoisomerase genes conferring ciprofloxacin resistance. These rapid and reliable assays may provide a convenient method of surveillance for genetic mutations conferring antibiotic resistance.

트레오닌 생합성에 관여하는 효모유전자 THR1의 클로님, 염색체통합 및 발현 (Molecular Cloning, Chromosomal Integration and Expression of the Homoserine Kinase gene THR1 of Saccharomyces cerevisiae)

  • 최명숙;이호주
    • 미생물학회지
    • /
    • 제29권1호
    • /
    • pp.16-24
    • /
    • 1991
  • The yeast gene THR1 encodes the homoserine kinase (EC 2.7.1.39: HKase) which catalyses the first step of the threonine specific arm at the end of the common pathway for methionine and threonine biosynthesis. A recombinant plasmid pMC3 (12.6 kilobase pairs, vector YCp50) has been cloned into E. coli HB101 from a yeast genomic library through its complementing activity of a thr1 mutation in a yeast recipient strain M39-1D. When subcloned into pMC32 (8.6kbp, vector YRp7) and pMC35 (8.3 kbp, vector YIp5), the HindIII fragment (2.7 kbp) of pMC3 insery was positive in the thrI complementing activity in both yeast and E. coli auxotrophic strains. The linearized pMC35 was introduced into the original recipient yeast strain and the mitotically stable chromosomal integrant was identified among the transformants. Through the tetrad analysis, the integration site of the pMC35 was localized to the region of THR1 structural gene at an expected genetic distance of approximately 11.1 cM from the ARG4 locus on the right arm of the yeast chromosome VIII. When episomically introduced into the auxotrophic cells and cultured in Thr omission liquid medium, the cloned gene overexpressed the HKase in the order of thirteen to fifteenfold, as compared with a wildtype. HKase levels are repressed by addition of threonine at the amount of 300 mg/l and 1, 190 mg/l for pMC32 and pMC3, respectively. Data from genetic analysis and HKase response thus support that the cloned HindIII yeast DNA fragment contains the yeast thr1 structural gene, along with necessary regulatory components for control of its proper expression.

  • PDF

Clinical features of Senior-Loken syndrome with IQCB1/NPHP5 mutation in a Filipino man

  • Chiu, Harold Henrison C.;Sucaldito, Ma. Sergia Fatima P.;Maceda, Ebner Bon G.;Montemayor, Jan Andre S.;Tamondong-Lachica, Diana R.
    • Journal of Genetic Medicine
    • /
    • 제17권1호
    • /
    • pp.39-42
    • /
    • 2020
  • The Senior-Loken syndrome was first described in 1961 as an oculo-renal disease consisting of familial juvenile nephronophthisis and Leber congenital amaurosis. It is a rare autosomal recessive disorder with a prevalence of 1:1,000,000 caused by mutations in nine genes (NPHP 1-8 and NPHP 10). Ocular manifestations (e.g., photophobia, nystagmus, and extreme hyperopia) occur within the first few years of life while renal manifestations (e.g., formation of multiple cysts impairing kidney function and end-stage renal disease) appear in late childhood to adolescence. Here, we report a case of a Filipino male presenting with rotatory nystagmus and progressive deterioration of vision since childhood. He had congenital amaurosis and juvenile nephronophthisis that progressed to end stage renal disease by age 19. All laboratory and imaging findings were consistent with chronic kidney disease. Molecular genetic testing of ciliopathy-related genes was performed revealing a homozygous mutation in exon 11 of the IQCB1/NPHP5 gene, c.1090C>T (p.Arg364). This sequence change created a premature translational stop signal resulting in a truncated protein product, nephrocystin-5 and its consequent loss of function. His symptoms eventually improved with initiation dialysis. The prognosis of Senior-Loken syndrome remains dismal and a high index of suspicion, early diagnosis and timely intervention of renal complications are warranted.

Verotoxin-2 A 유전자의 효소활성 부위에 대한 위치특이적 변이 및 결손변이유발 (Site-specific and deletional mutagenesis for two regions of Verotoxin-2 A gene encoding enzymatically active domain)

  • 김용환;김상현;차인호;김경숙;이영춘
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.541-546
    • /
    • 1997
  • VT2(Verotoxin-2)의 효소활성 영역에 해당되는 두 영역의 아미노산들에 대하여, 첫번째 보존영역의 Glu167을 conservative point mutation 시키고, 두 번째 보존영역의 구성 아미노산 5개 전부를 deletion mutation 시켜, 각 변이주에서 독성의 감소 정도를 wild type과 비교한 결과 다음과 같은 성적을 얻었다. 1. pKSC101을 Eco RI과 Pst I으로 절단하여 940bp insert를 통일 제한효소로 절단한 M 13mp19에 삽입하여 pEP19RF를 구축하였다. 이를 이용하여 dU-SSDNA template를 제조하고, mutagenic primer를 annealing 하여 변이를 도입하였으며, 변이가 도입된 insert를 acceptor plasmid에 삽입시켜 각각 발현 플라스미드 pOEX와 pDEX를 구축하였다. 각각의 mutant 단백질을 발현시키기 위하여 pOEX와 pDEX를 JM109에 형질전환시켜 mutant 재조합 균주인 POMUT109와 DEMUT109를 작성하였다. 2. POMUT109와 DEMUT109를 IPTG 유도 발현시킨 배양상층액을 Vero cell에 대하여 세포독성을 시험한 결과 wild type에 비하여 POMUT109의 배양 여액에서는 2000배, DEMUT109의 배양여액에서는 적어도 3000배 이상의 세포독성을 감소시켰다.

  • PDF

Expression and Characterization of Polyketide Synthase Module Involved in the Late Step of Cephabacin Biosynthesis from Lysobacter lactamgenus

  • Lee, Ji-Seon;Vladimirova, Miglena G.;Demirev, Atanas V.;Kim, Bo-Geum;Lim, Si-Kyu;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.427-433
    • /
    • 2008
  • The cephabacins produced by Lysobacter lactamgenus are ${\beta}$-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, ${\beta}$-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of $His_6$-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-L-Ala-L-$^3H$-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with $^{14}C$-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.

ermK Leader Peptide : Amino Acid Sequence Critical for Induction by Erythromycin

  • Kwon, Ae-Ran;Min, Yu-Hong;Yoon, Eun-Jeong;Kim, Jung-A;Shim, Mi-Ja;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1154-1157
    • /
    • 2006
  • The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E. coli ${\beta}-galactosidase$ reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not. The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.