• Title/Summary/Keyword: Arctic plant

Search Result 26, Processing Time 0.02 seconds

List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region (북극권 스피츠베르겐 섬의 관속식물 국명 목록)

  • Lee, Kyoo;Han, Dong-Uk;Hyun, Jin-Oh;Hwang, Young-Sim;Lee, Yoo-Kyung;Lee, Eun-Ju
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.101-110
    • /
    • 2012
  • In this study, we attempted to provide Korean names to the arctic vascular plants observed around the Dasan Korean Arctic Station and Longyearbyen in Spitsbergen Island, in the Arctic region. To obtain recognizable results, plants were named according to the following naming rules. (1) When Korean names already existed, those names were used. (2) When there was no Korean name for a plant species, a scientific name for the plant was translated into a Korean name. (3) If the meaning of the scientific name was unclear, an English common name was translated into Korean name. (4) If the scientific names had meaning to the Arctic inhabitation, the Korean names included the word 'Buk-geuk'. (5) If the distribution of the plant was limited to the Arctic area or the original species lived in the polar region, the Korean name included the word 'Buk-geuk'. (6) If the plant had no Korean generic name, a particular suffix '~a-jae-bi' was added to the closely related genus name of the plant species, or a new Korean genus name was used by translating a common English name. (7) If the same generic name had two or more Korean names, a generic name that better reflected the characteristics of the plant was selected. In this paper, we reported Korean names for 46 plants species belonging to 15 families and 28 genera. Eight plants had an existing Korean name and the other species were given new Korean names based on the criteria outlined above. We also made new Korean generic names for three genera, Braya, Micranthes and Cassiope.

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard

  • Son, Deokjoo;Lee, Eun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1275-1283
    • /
    • 2022
  • Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants (Cassiope tetragona [L.] D. Don, Dryas octopetala L. and Silene acaulis [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.

Rock-Surface Temperatures of the Summit Area of Mt. Halla as a Habitat for an Arctic-alpine Plant Diapensia lapponica var. obovata (돌매화나무 서식지로서 한라산 정상 암벽 표면의 온도특성)

  • Kim, Taeho;Lee, Seung-Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.89-101
    • /
    • 2018
  • In Mt. Halla, an arctic-alpine plant Diapensia lapponica var. obovata largely clings to rock surfaces. We observed the rock-surface temperatures of a rocky ridge on the summit area of the mountain from late April 2009 to early May 2010 in order to examine the diurnal and annual temperature variations and the thermal amplitude. We also investigated temperature regimes such as the frequency of freeze-thaw cycles and the temperature change, which might endanger the habitat through frost weathering. For comparison of slope aspects, temperature monitoring was carried out on the north and south faces of the same rocky ridge. The south face experiences the high daily maximum rock-surface temperatures and the high thermal amplitudes during the unfreezing season of May to November 2009. The temperature regimes are considered to exert physiological stress to the arctic-alpine plant. In addition, the south face shows the high frequency of freeze-thaw cycles during the seasonal freezing period of December 2009 to April 2010. This indicates that the south face is susceptible the exfoliation and granular disintegration of rock surfaces, which results in habitat destruction. As a consequence, the south face is believed to be less favorable for the establishment and growth of the arctic-alpine plant than the north face on the summit area of Mt. Halla.

Ice Load Generation in Time Domain Based on Ice Load Spectrum for Arctic Offshore Structures (극지해양구조물 성능평가를 위한 스펙트럼 기반 시간역 빙하중 생성에 관한 연구)

  • Kim, Young-Shik;Kim, Jin-Ha;Kang, Kuk-Jin;Han, Solyoung;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.411-418
    • /
    • 2018
  • This paper introduces a new method of ice load generation in the time domain for the station-keeping performance evaluation of Arctic offshore structures. This method is based on the ice load spectrum and mean ice load. Recently, there has been increasing interest in Arctic offshore technology for the exploration and exploitation of the Arctic region because of the better accessibility to the Arctic ocean provided by the global warming effect. It is essential to consider the ice load during the development of an Arctic offshore structure. In particular, when designing a station-keeping system for an Arctic offshore structure, a consideration of the ice load acting on the vessel in the time domain is essential to ensure its safety and security. Several methods have been developed to consider the ice load in the time domain. However, most of the developed methods are computationally heavy because they consider every ice floe in the sea ice field to calculate the ice load acting on the vessel. In this study, a new approach to generate the ice load in the time domain with computational efficiency was suggested, and its feasibility was examined. The ice load spectrum and mean ice load were acquired from a numerical analysis with GPU-event mechanics (GEM) software, and the ice load with the varying heading of a vessel was reconstructed to show the feasibility of the proposed method.

Cushion plant Silene acaulis is a pioneer species at abandoned coal piles in the High Arctic, Svalbard

  • Oh, Minwoo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Background: Abandoned coal piles after the closure of mines have a potential negative influence on the environment, such as soil acidification and heavy metal contamination. Therefore, revegetation by efficient species is required. For this, we wanted to identify the role of Silene acaulis in the succession of coal piles as a pioneer and a nurse plant. S. acaulis is a well-studied cushion plant living in the Arctic and alpine environments in the northern hemisphere. It has a highly compact cushion-like form and hosts more plant species under its canopy by ameliorating stressful microhabitats. In this research, we surveyed vegetation cover on open plots and co-occurring species within S. acaulis cushions in coal piles with different slope aspects and a control site where no coal was found. The plant cover and the similarity of communities among sites were compared. Also, the interaction effects of S. acaulis were assessed by rarefaction curves. Results: S. acaulis was a dominant species with the highest cover (6.7%) on the coal piles and occurred with other well-known pioneer species. Plant communities on the coal piles were significantly different from the control site. We found that the pioneer species S. acaulis showed facilitation, neutral, and competition effect in the north-east facing slope, the south-east facing slope, and the flat ground, respectively. This result was consistent with the stress gradient hypothesis because the facilitation only occurred on the north-east facing slope, which was the most stressed condition, although all the interactions observed were not statistically significant. Conclusions: S. acaulis was a dominant pioneer plant in the succession of coal piles. The interaction effect of S. acaulis on other species depended on the slope and its direction on the coal piles. Overall, it plays an important role in the succession of coal piles in the High Arctic, Svalbard.

Comparison of Genetic Diversity of Saxifraga Species Distributed in the Arctic Svalbard and Korea (북극권 Svalbard 지역과 한국에 분포하는 Saxifraga 속 식물의 유전적 다형성 비교)

  • Seo, Hyo-Won;Kang, Sung-Ho;Yi, Jung-Yoon;Park, Young-Eun;Cho, Ji-Hong;Ahn, Won-Gyeong;Yu, Dong-Lim
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • The species in genus Saxifiraga distributed in circumpolar arctic are taxonomically difficult to study. RAPD analyses were performed to compare the genetic diversity of the 16 Saxifrages originated from the Norwegian Arctic Svalbard and Korea. The 12 accessions of URP primers were tested and 4 of which showed polymorphism were selected. Total 79 (44.8%) DNA bands were scored and analyzed by UPGMA cluster analysis. The results indicated that all of the 9 Saxifraga species from Svalbard showed high genetic diversity than those from Korea. The Similarity matrix and cluster analyses indicated that the Saxifraga species from Svalbard and Korea can be divided into two different subgroups. RAPDs of the Saxifraga species of Korea showed higher homologous patterns than those of Arctic Saxifrage. Among the Saxifraga species, we found that the morphological similarity reflects the genetic similarity. The geographic distance, clonal reproduction, and environmental condition may contribute the high level of genetic diversity between Saxifraga species from the two isolated regions.

Antioxidant Capacity of Crude Extract and Its Solvent Fractions of Arctic Terrestrial Plant Ranunculus heperporeus (북극식물 Ranunculus hyperboreus의 추출물과 용매분획물의 항산화 활성)

  • Lee, Jung Im;Kim, Hojun;Seo, Hyo-Won;Kong, Chang-Suk;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.185-193
    • /
    • 2016
  • In this study, antioxidative potentials of the crude extract and its four solvent fractions from the Arctic terrestrial plant Ranunculus heperporeus were evaluated by using four different activity tests, including the inhibition of intracellular reactive oxygen species (ROS) and lipid peroxidation in Raw 264.7 cells as well as determining the extent of both the scavenging of peroxynitrite ($ONOO^-$) and the oxidative damage of genomic DNA purified from Raw 264.7 cells. Based on a comparative analysis, n-BuOH, and 85% aq.MeOH solvent fractions showed good scavenging effects on the production of intracellcular ROS and inhibited membrane lipid peroxidation and DNA oxidation. In addition, n-BuOH and 85% aq.MeOH fractions exhibited good scavenging effects on both authentic peroxynitrite and one generated from SIN-1. Among the samples tested, the n-BuOH fraction revealed the strongest antioxidant effect.

Development of an Arctic Tanker Design (극지용 쇄빙 유조선 개발)

  • Kim, Hyun-Soo;Ha, Mun-Keun;Ahn, Dang;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.20-29
    • /
    • 2003
  • When Arctic offshore development in the 1970's first led to the consideration of ice capable tankers, there was a high level of uncertainty over design requirements for both safety and ship performance. Also here was a lack of reliable methods to evaluate design proposals. Since that time, improved understanding of the ice environment has raised the confidence of design specifications. Parallel developments have resulted in a suite of engineering tools for ship performance evaluation at the design stage Recent development of offshore and near shore oil and gas reserves in several countries together with economic studies of increased transportation through the Russian Arctic has newly introduced the interest in ice capable tanker design. in response, Samsung Heavy Industries (SHI) applied its experience in tanker design and construction to the design of a specialized tanker with ice capability. SHI produced two prototype hull designs for further study. The performance of both hulls and of the propellers was evaluated at the Institute for Marine Dynamics (IMD) in St. John's, Newfoundland This paper discusses the development of the design, describes the model experiments to determine performance and variations, and presents the results.

A Study on the Hull Form Design and Ice Resistance & Propulsion Performance of a Platform Support Vessel (PSV) Operated in the Arctic Ocean (극지해역 운용 해양작업지원선(PSV)의 선형설계와 빙 저항추진 성능 연구)

  • Yum, Jong-Gil;Kang, Kuk-Jin;Jang, Jin-ho;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.497-504
    • /
    • 2018
  • Platform Support Vessels operated in the Arctic Ocean support diverse operations of offshore plant in the sea, and the PSV is also needed to support works to exploit the oil and gas in the Arctic Ocean. Both of the ice breaking and the open sea performance have been considered together to secure the enhanced operational performance at the harsh environment in the Arctic Ocean and the open sea as well. In this study, One of the design requirements of a PSV is to guarantee continuous icebreaking performance with 3 knots at 1 m thickness of level ice, where the design draft is 7.5m and the engine power is 13 MW. Three hull forms were designed, and the ice resistance based on empirical formulas was estimated to select the initial hull form having an outstanding performance. The full scale performance of the designed hull forms was predicted by the ice model test conducted in the ice model basin of Korea Research Institute of Ships & Ocean Engineering(KRISO). The analysed results show that the selected hull form satisfies the above design requirement.