• Title/Summary/Keyword: Arctic ocean

Search Result 220, Processing Time 0.028 seconds

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress (북극 동물플랑크톤 Calanus glacialis TCTP (Translationally Controlled Tumor Protein)가 산화적 스트레스 상태에서 E. coli 세포의 저항성에 미치는 효과)

  • Park, Yu Kyung;Lee, Chang-Eun;Lee, Hyoungseok;Koh, Hye Yeon;Kim, Sojin;Lee, Sung Gu;Kim, Jung Eun;Yim, Joung Han;Hong, Ju-Mi;Kim, Ryeo-Ok;Han, Se Jong;Kim, Il-Chan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.931-938
    • /
    • 2020
  • Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.

Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load (平坦氷荷重을 받는 細長形 해양구조물의 動的 거동)

  • Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

Dynamic Interaction Modelling between Arctic Offshore Structures and Ice Floe (극지 해양 구조물과 얼음의 동적 모델화)

  • 황철성;김상준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.87-92
    • /
    • 1989
  • In this study, the nonlinear dynamic model of the systems which include the offshore structure, the surrounding sea water in terms of the added mass, the foundation in terms of frequency independent springs, dashpots, and the floating ice feature with its hydrodynamic added mass, are proposed for the problem of the large ice floes impact. Dynamic Analysis is performed on two site conditions, sand site and silt site, and on two seasons, winter and summer, for various ice floe velocities. As a result of study, Ice floes from energy balenced method is lower than that from dynamic modeling on sand site, and higher than the on silt site.

  • PDF

Spatial Characteristics of Meiobenthic Community of Kongfjorden Sediment in the Svalbard Island, the Arctic Sea (북극해 스발바드 군도 Kongsfjorden 퇴적물에 서식하는 중형저서동물 군집의 공간 특성)

  • Kim, Dong-Sung;Shin, Jae-Chul;Kang, Sung-Ho;Chung, Ho-Sung
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2005
  • The community structure of meiobenthos was studied in the sediment of Kongfjorden, Spitsbergen of Svalbard Island in the Arctic Sea. Samples of meiobenthos were collected in August, 2003. Meiobenthic organisms were collected by SCUBA and van veen grab or acryl sub-corers 34mm in internal diameter, and were taken from upper sediment to a depth of 3cm at each station. A total of 26 meiofaunal groups were found in the sediment of Spitsbergen in Svalbard Island. Nematodes were the most dominant faunal group. Sarcomastigophorans, benthic harpacticoids, and nauplius larvae of crustaceans, were also important components of the meiobenthic community of Kongsfjorden. All of these low faunal groups were comprised of more than 90% of total meiobenthos at every station. The total density of meiobenthos at each station was highest at station MeG 6 $(3,583{\pm}1,137inds./10cm^2)$, and lowest at station $MeG9(28{\pm}1inds./10cm^2)$. Meiobenthos in general showed the highest density in the upper 1cm layer. This may be associated with food and oxygen supply to subsurface. Harpacticoids showed extreme preference at the surface and little presence in layers deeper than 2cm. These animals may be less resistant to oxygen deficiency, and nauplius also showed the same trend. However, in St. MeG 8 and 9, meiobenthos were dense at depths of more than 0-1cm, at especially at depths of 2-3m because of relatively easy penetration of oxygen. Based on the results of cluster analysis, three meiobenthos assemblages were distinguished: one was in the outer and two were in the inner fjord. Station SCU 5 was grouped with the meiobenthos assemblage located in the outer fjord. The outer ford community was characterised by : 1) a relatively low mean number of meiobenthos taxa, 2) a relatively high density of harpacticods and nauplius. One of the inner ford communities (a group of four nation: MeG 2, 3, 8, 9) was in the proximity of the glaciers. Specifically, it was characterised by : 1) a low mean number of meiobenthos taxa, 2) a low density. The other inner ford community was characterised by both a high density and great mean number of meiofaunal taxa.

Holocene Glaciomarine Sedimentation and Its Paleoclimatic Implication on the Svalbard Fjord in the Arctic Sea (북극해 스발바드 군도 피오르드에서 일어난 홀로세의 빙해양 퇴적작용과 고기후적 의미)

  • Yoon, Ho-Il;Kim, Yea-Dong;Yoo, Kyu-Cheul;Lee, Jae-Il;Nam, Seung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.

Distribution of Phytoplankton Biomass and Nutrient Concentrations in the Barents and Kara Seas during the 1st Korea-Russia Arctic Expedition in August, 2000 (제 1차 한-러 북극해 탐사(2000년 8월) 동안의 바렌츠해와 카라해의 식물플랑크톤 현존량 및 영양염 분포)

  • Kang, Sung-Ho;Chung, Kyung-Ho;Kang, Jae-Shin;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • During the 1st Korea-Russia Arctic Expedition from 3 to 26 August, 2000 phytoplankton biomass and nutrient concentration were measured in the Barents and Kara Seas. Total of 57 surface samples were collected f3r the phytoplankton related measurements. Chlorophyll a (chi a) concentraitons were measured to investigate the relations between physico-chemical factors and phytoplankton biomass distribution. Chl a values ranged from 0.14 to $2.34mg\;m^{-3}$ (mean of $0.65{\pm}0.42mg\;m^{-3}$) over the surface stations. The elevated values of the chi a concentrations $(1.49{\sim}2.34mg\;m^{-3})$ were found in the southeastern Barents Sea near the Pechora River. Nanoplanktonic $(<20{\mu}m)$ phytoflagellates were the important contributors for the increase of the chi a. The nano-sized phytoflagellates accounted for more than 80% of the total chi a biomass in the study area. Mean chi a concentration in the Barents Sea $(0.72{\pm}0.57 mg\;m^{-3})$ was higher than in the Kan Sea $(0.52{\pm}0.45mg\;m^{-3})$, but there was no big difference between two areas. Surface temperatures and salinities ranged from 4.1 to $11.7^{\circ}C$ (mean of $8.8{\pm}1.9^{\circ}C$) and from 23.8 to 32.5psu (mean of $30.3{\pm}1.9^{\circ}C$ psu), respectively. The physical factors were not highly correlated with phytoplankton distribution. It is speculated that the insignificant correlation between phytoplankton biomass and physical factor was due to the same current which introduced similar water mass with higher water temperature and lower salinity into the study area. The mean values of major nutrients such as ammonia, nitrite, nitrate, phosphate, and silicate were $0.42{\pm}0.31{\mu}M,\;0.10{\pm}0.03{\mu}M,\;1.44{\pm}1.03{\mu}M,\;0.35{\pm}0.12{\mu}M,\;10.99{\pm}3.45{\pm}M$, respectively. The relations between phytoplankton biomass and nutrient concentration were not close, indicating that the surface nutrient concentrations during the study seem to be controlled by other physical factors such as input of fresh water (i.e. dilution effects).

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Functional Requirements to Develop the Marine Navigation Supporting System for Northern Sea Route (북극해 안전운항 지원시스템 구축을 위한 기능적 요구조건 도출)

  • Hong, Sung Chul;Kim, Sun Hwa;Yang, Chan Su
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • International attention on the Northern Sea Route has been increased as the decreased sea-ice extents in Northern Sea raise the possibility to develop new sea routes and natural resources. However, to protect ships' safety and pristine environments in polar waters, International Maritime Organization(IMO) has been developing the Polar Code to regulate polar shipping. The marine navigation supporting system is essential for ships traveling long distance in the Northern Sea as they are affected by ocean weather and sea-ice. Therefore, to cope with the IMO Polar Code, this research proposes the functional requirements to develop the marine navigation supporting system for the Northern Sea Route. The functional requirements derived from the IMO Polar code consist of arctic voyage risk map, arctic voyage planning and MSI(Marine Safety Information) methods, based on which the navigation supporting system is able to provide dynamic and safe-economical sea route service using the sea-ice observation and prediction technologies. Also, a requirement of the system application is derived to apply the marine navigation supporting system for authorizing ships operating in the Northern Sea. To reflect the proposed system in the Polar Code, continual international exchange and policy proposals are necessary along with the development of sea-ice observation and prediction technologies.

A Comparative Study on Ice Load Characteristics between General and Ice-breaking Operations in Ice-covered Waters (빙해지역 일반 운항 및 쇄빙 운항 시의 빙하중 특성 비교 연구)

  • Lee, Min-Woo;Kwon, Yong-Hyeon;Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • The icebreaking research vessel ARAON had her second ice trial in the Arctic Ocean from July 16 to August 12, 2010. In this study, the ice loads measured during the “general” operation and “ice breaking” operation in ice-covered waters were analyzed and compared. Whereas the “general” operation stands for the voyage in the water partially covered by ice, the “ice breaking” operation involved substantial ice floes for the ice breaking performance test. Based on the measured data, comparisons of the relationship between the ship speed and ice load, and between the locations of strain gauges and ice loads were investigated. Peak stresses higher than 20 MPa were found. The longitudinal and vertical correlations between the measurement location and ice load were analyzed, and the probability of peak stress was calculated. As a result, the probability function for higher ice loads during both operation modes was expressed in an exponential and power forms.