• 제목/요약/키워드: Arctic

검색결과 487건 처리시간 0.038초

북극해 일대에서 본격화되기 시작한 강대국 경쟁 (The Return of Great Power Competition to the Arctic)

  • 홍규덕;송승종;권태환;정재호
    • 해양안보
    • /
    • 제2권1호
    • /
    • pp.151-184
    • /
    • 2021
  • 21세기 최대의 화두 중 하나는 기후이변으로 인한 지구 온난화 현상이다. 지구온난화는 글로벌 생태계를 위협하는 재앙인 동시에, 북극항로의 상용화를 통한 물류비용 절감이나 광물자원 개발 등을 가능케 하는 기회이기도 하다. 지구의 생태·환경 위협과 새로운 경제적 기회가 병존하는 '북극의 역설'이 글로벌 국제환경에 심대한 영향을 미치게 될 것임을 예고한다. 빙하가 사라지면서, 수에즈-파나마 운하를 통과하지 않고 북극해를 통과하는 루트가 '제3의 항로'로 떠올랐다. 이는 기존 항로의 거리를 30% 정도 줄일 수 있다. 아울러 지구 온난화는 지정학적 패러다임의 변화를 몰고왔다. 북극 얼음이 녹아내리기 시작하면서 북극이 '상수'가 아닌 21세기 최대의 지정학적 '변수'로 떠오를 조짐이다. 이에 따라 탈냉전 시대에 들어 '평화와 협력의 공간'으로 인식되던 북극이 군사·안보측면이 강조되는 새로운 전략환경에 직면하고 있다. 냉전종결 이후 한동안 환경보호 등을 중심으로 협력적 모습을 보이던 북극이 다시금 '냉전 2.0'을 예고하며, 강대국들 간의 새로운 경쟁과 대결의 무대로 변모하고 있다. 본 연구의 목적은 북극해의 전략적 가치를 지정학적 및 지경학적 관점에서 평가하고, 북극 일대에서 벌어지는 신냉전 다이내믹을 분석함으로써, 이를 바탕으로 우리에게 주는 전략적 함의를 도출해 보는 것이다.

  • PDF

Study of Future Flow in Arctic Transportation using Big Data

  • 투멩자르갈;김원욱;윤대근
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 추계학술대회
    • /
    • pp.109-111
    • /
    • 2015
  • The Arctic transportation offers big opportunities as shorter transport distances, less fuel consumption, less carbon emissions, faster deliveries of goods, and more profits. The present study is aimed to investigate a future flow to deal with policy in arctic transportation using Big data analysis.

  • PDF

극지 해빙 위성관측을 위한 분석 기술 개발 (Research on Analytical Technique for Satellite Observstion of the Arctic Sea Ice)

  • 김현철;한향선;현창욱;지준화;손영선;이성재
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1283-1298
    • /
    • 2018
  • 온난화에 의한 이상기후의 징후가 직접적으로 감지되고 있는 북극권에 대한 연구 필요성이 사회적으로 강력히 요구되고 있다. 온난화의 추이를 가장 잘 보여주고 있는 해빙의 변화는 인공위성 원격탐사를 이용하여 추적 감시된다. 극지연구소에서 2017년부터 "북극해빙위성 관측을 위한 기술 개발" 연구를 진행하고 있다. 본 연구는 북극 해빙의 특성 정보를 위성자료로부터 추출하기 위한 다양한 접근법을 이용한 연구를 포함하고 있으며, 북극권 개발에 대비한 '북극 빙권 종합 위성 관측망' 구축에 필수적인 국제 공동 연구 협력도 포함하고 있다. 기후변화 연구와 더불어 북극항로 활용에 대한 기초정보를 제공하고 있는 극지연구소의 북극 원격탐사 연구 소개를 통해 국내 원격탐사 전문가들의 관심과 집중을 부탁하고자 한다. 북극연구에 대한 국제 동향과 국내 정책 배경을 소개하고, 극지연구소에서 연구 수행한 빙권 정보, 특히 한국항공우주연구원과 협동연구를 통해 아리랑위성을 활용한 북극 해빙 관측 연구를 소개한다.

북극권 스피츠베르겐 섬의 관속식물 국명 목록 (List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region)

  • 이규;한동욱;현진오;황영심;이유경;이은주
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.101-110
    • /
    • 2012
  • In this study, we attempted to provide Korean names to the arctic vascular plants observed around the Dasan Korean Arctic Station and Longyearbyen in Spitsbergen Island, in the Arctic region. To obtain recognizable results, plants were named according to the following naming rules. (1) When Korean names already existed, those names were used. (2) When there was no Korean name for a plant species, a scientific name for the plant was translated into a Korean name. (3) If the meaning of the scientific name was unclear, an English common name was translated into Korean name. (4) If the scientific names had meaning to the Arctic inhabitation, the Korean names included the word 'Buk-geuk'. (5) If the distribution of the plant was limited to the Arctic area or the original species lived in the polar region, the Korean name included the word 'Buk-geuk'. (6) If the plant had no Korean generic name, a particular suffix '~a-jae-bi' was added to the closely related genus name of the plant species, or a new Korean genus name was used by translating a common English name. (7) If the same generic name had two or more Korean names, a generic name that better reflected the characteristics of the plant was selected. In this paper, we reported Korean names for 46 plants species belonging to 15 families and 28 genera. Eight plants had an existing Korean name and the other species were given new Korean names based on the criteria outlined above. We also made new Korean generic names for three genera, Braya, Micranthes and Cassiope.

북극 온난화에 따른 겨울철 대기 변동성 분석 연구 (Analysis on Winter Atmosphereic Variability Related to Arctic Warming)

  • 김백민;정의현;임규호;김현경
    • 대기
    • /
    • 제24권2호
    • /
    • pp.131-140
    • /
    • 2014
  • The "Barents Oscillation (BO)", first designated by Paul Skeie (2000), is an anomalous recurring atmospheric circulation pattern of high relevance for the climate of the Nordic Seas and Siberia, which is defined as the second Emperical Orthogonal Function (EOF) of monthly winter sea level pressure (SLP) anomalies, where the leading EOF is the Arctic Oscillation (AO). BO, however, did not attracted much interest. In recent two decades, variability of BO tends to increase. In this study, we analyzed the spatio-temporal structures of Atmospheric internal modes such as Arctic Oscillation (AO) and Barents Oscillation (BO) and examined how these are related with Arctic warming in recent decade. We identified various aspects of BO, not dealt in Skeie (2000), such as upper-level circulation and surface characteristics for extended period including recent decade and examined link with other surface variables such as sea-ice and sea surface temperature. From the results, it was shown that the BO showed more regionally confined spatial pattern compared to AO and has intensified during recent decade. The regional dipolelar structure centered at Barents sea and Siberia was revealed in both sea-level pressure and 500 hPa geopotential height. Also, BO showed a stronger link (correlation) with sea-ice and sea surface temperature especially over Barents-Kara seas suggesting it is playing an important role for recent Arctic amplification. BO also showed high correlation with Ural Blocking Index (UBI), which measures seasonal activity of Ural blocking. Since Ural blocking is known as a major component of Eurasian winter monsoon and can be linked to extreme weathers, we suggest deeper understanding of BO can provide a missing link between recent Arctic amplification and increase in extreme weathers in midlatitude in recent decades.

극지해양구조물 성능평가를 위한 스펙트럼 기반 시간역 빙하중 생성에 관한 연구 (Ice Load Generation in Time Domain Based on Ice Load Spectrum for Arctic Offshore Structures)

  • 김영식;김진하;강국진;한소령;김진환
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.411-418
    • /
    • 2018
  • This paper introduces a new method of ice load generation in the time domain for the station-keeping performance evaluation of Arctic offshore structures. This method is based on the ice load spectrum and mean ice load. Recently, there has been increasing interest in Arctic offshore technology for the exploration and exploitation of the Arctic region because of the better accessibility to the Arctic ocean provided by the global warming effect. It is essential to consider the ice load during the development of an Arctic offshore structure. In particular, when designing a station-keeping system for an Arctic offshore structure, a consideration of the ice load acting on the vessel in the time domain is essential to ensure its safety and security. Several methods have been developed to consider the ice load in the time domain. However, most of the developed methods are computationally heavy because they consider every ice floe in the sea ice field to calculate the ice load acting on the vessel. In this study, a new approach to generate the ice load in the time domain with computational efficiency was suggested, and its feasibility was examined. The ice load spectrum and mean ice load were acquired from a numerical analysis with GPU-event mechanics (GEM) software, and the ice load with the varying heading of a vessel was reconstructed to show the feasibility of the proposed method.

Icevaning control of an Arctic offshore vessel and its experimental validation

  • Kim, Young-Shik;Kim, Jinwhan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.208-222
    • /
    • 2021
  • Managing with the presence of sea ice is the primary challenge in the operation of floating platforms in the Arctic region. It is widely accepted that offshore structures operating in Arctic conditions need station-keeping methods as well as ice management by icebreakers. Dynamic Positioning (DP) is one of the station-keeping methods that can provide mobility and flexibility in marine operations. The presence of sea ice generates complex external forces and moments acting on the vessel, which need to be counteracted by the DP system. In this paper, an icevaning control algorithm is proposed that enables Arctic offshore vessels to perform DP operations. The proposed icevaning control enables each vessel to be oriented toward the direction of the mean environmental force induced by ice drifting so as to improve the operational safety and reduce the overall thruster power consumption by having minimum external disturbances naturally. A mathematical model of an Arctic offshore vessel is summarized for the development of the new icevaning control algorithm. To determine the icevaning action of the Arctic offshore vessel without any measurements and estimation of ice conditions including ice drift, task and null space are defined in the vessel model, and the control law is formulated in the task space. A backstepping technique is utilized to handle the nonlinearity of the Arctic offshore vessel's dynamic model, and the Lyapunov stability theory is applied to guarantee the stability of the proposed icevaning control algorithm. Experiments are conducted in the ice tank of the Korea Research Institute of Ships and Ocean Engineering to demonstrate the feasibility of the proposed approach.

The Oxygen-Transport System of Polar Fish: The Evolution of Hemoglobin

  • Verde Cinzia;Prisco Guido di
    • Ocean and Polar Research
    • /
    • 제25권4호
    • /
    • pp.617-623
    • /
    • 2003
  • Organisms living in the Arctic and Antarctic regions are exposed to strong constraints, of which temperature is a driving factor. Evolution has led to special adaptations, some with important implications at the biochemical, physiological, and molecular levels. The northern and southern polar oceans have very different characteristics. Tectonic and oceanographic events have played a key role in delimiting the two polar ecosystems and influencing evolution. Antarctica has been isolated and cold longer than the Arctic; its ice sheet developed at least 10 million years earlier. As an intermediate system, the Arctic is a connection between the more extreme, simpler Antarctic system and the very complex temperate and tropical systems. By studying the molecular bases of cold adaptation in polar fish, and taking advantage of the information available on hemoglobin structure and function, we analysed the evolutionary history of the ${\alpha}\;and\;{\beta}globins$ of Antarctic and Arctic hemoglobin using the molecular clock hypothesis as a basis for reconstructing the phylogenetic relationships among species.